--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
DQogSSBkaWQgaXQhIEl0IHRvb2sgNDI3Mjg3IHR3aXN0cyBhbmQgYWxtb3N0IDkwIGhvdXJz
IGJ5IHRpbWVyLiA0QyBzdGFnZSB3ZW50IHdpdGhvdXQgdW5leHBlY3RlZCB0cm91YmxlcyAo
YWZ0ZXIgcHJlcGFyaW5nIG9mIGxhcmdlIHNldCBvZiBtYWNyb3MgaW5jbHVkaW5nIDEyMGRl
ZyByb3RhdGlvbiBvZiB0aGUgc2luZ2xlIHBpZWNlKS4NCiAgIFByb2JhYmx5IGl0J3MgYSBt
b3N0IGRpZmZpY3VsdCBwdXp6bGUgdGhhdCBJIG1ldC4gSXQgcmVxdWlyZWQgd29yayB3aXRo
IHN0cnVjdHVyZSBvZiB0aGUgd2hvbGUgMTIwLWNlbGwsIGFuZCBJIGhhZCB0byBrZWVwIGl0
IGluIG1pbmQsIGJlY2F1c2UgaXQncyBkaWZmaWN1bHQgdG8gZHJhdyBzdWNoIG9iamVjdCBv
biAyRCBwYXBlci4uLg0KICAgVGhpcyBwdXp6bGUgaXMgdW5pcXVlIGJlY2F1c2Ugb2YgbXVs
dGlwbGUgcGFyaXR5IHByb2JsZW1zIGluIHRoZSB3ZWIgb2Ygb3JiaXRzIG9mIGRpZmZlcmVu
dCBkaW1lbnNpb25zLiBBbmQgSSBzdGlsbCBkb24ndCBrbm93IHdhcyBpdCBhIGx1Y2sgdGhh
dCAzQyBwYXJpdGllcyB3ZXJlIHNvbHZlZCBieSBjb21iaW5hdGlvbiBvZiAzIHN5bW1ldHJp
Y2FsIGNsdXN0ZXJzIG9mIGZsaXBzLCBvciB0aGVyZSBpcyByZWFsbHkgbm90IG11Y2ggZnJl
ZWRvbSBvZiBwb3NzaWJsZSBjb21iaW5hdGlvbnMgYXQgdGhhdCBzdGFnZS4NCiANCg0KICAg
SWYgYW55Ym9keSBpcyBnb2luZyB0byB0cnkgdGhpcyBwdXp6bGUgSSBjYW4gb25seSB3aXNo
IGhpbSBnb29kIGx1Y2suIEFuZCBhIGxvdCBvZiBwYXRpZW5jZS4uLg0KIA0KDQogICBBbmRy
ZXkNCg==
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+PC9wPjxwPkkgZGlkIGl0ISBJdCB0b29rIDQyNzI4NyB0d2lzdHMgYW5kIGFsbW9zdCA5
MCBob3VycyBieSB0aW1lci4gNEMgc3RhZ2Ugd2VudCB3aXRob3V0IHVuZXhwZWN0ZWQgdHJv
dWJsZXMgKGFmdGVyIHByZXBhcmluZyBvZiBsYXJnZSBzZXQgb2YgbWFjcm9zIGluY2x1ZGlu
ZyAxMjBkZWcgcm90YXRpb24gb2YgdGhlIHNpbmdsZSBwaWVjZSkuPC9wPjxwPiZuYnNwOyBQ
cm9iYWJseSBpdCYjMzk7cyBhIG1vc3QgZGlmZmljdWx0IHB1enpsZSB0aGF0IEkgbWV0LiBJ
dCByZXF1aXJlZCZuYnNwO3dvcmsgd2l0aCZuYnNwO3N0cnVjdHVyZSBvZiB0aGUgd2hvbGUg
MTIwLWNlbGwsIGFuZCBJIGhhZCB0byBrZWVwIGl0IGluIG1pbmQsIGJlY2F1c2UgaXQmIzM5
O3MgZGlmZmljdWx0IHRvIGRyYXcgc3VjaCBvYmplY3Qgb24gMkQgcGFwZXIuLi48L3A+PHA+
Jm5ic3A7IFRoaXMgcHV6emxlIGlzIHVuaXF1ZSBiZWNhdXNlIG9mIG11bHRpcGxlIHBhcml0
eSBwcm9ibGVtcyBpbiB0aGUgd2ViIG9mIG9yYml0cyBvZiBkaWZmZXJlbnQgZGltZW5zaW9u
cy4gQW5kIEkgc3RpbGwgZG9uJiMzOTt0IGtub3cgd2FzIGl0IGEgbHVjayB0aGF0IDNDIHBh
cml0aWVzIHdlcmUgc29sdmVkIGJ5IGNvbWJpbmF0aW9uIG9mIDMgc3ltbWV0cmljYWwgY2x1
c3RlcnMgb2YgZmxpcHMsIG9yIHRoZXJlIGlzIHJlYWxseSBub3QgbXVjaCBmcmVlZG9tIG9m
IHBvc3NpYmxlIGNvbWJpbmF0aW9ucyBhdCB0aGF0IHN0YWdlLjwvcD48cD48YnI+PC9wPjxw
PiZuYnNwOyBJZiBhbnlib2R5IGlzIGdvaW5nIHRvIHRyeSZuYnNwO3RoaXMgcHV6emxlJm5i
c3A7SSBjYW4gb25seSB3aXNoIGhpbSBnb29kIGx1Y2suIEFuZCBhIGxvdCBvZiBwYXRpZW5j
ZS4uLjwvcD48cD48YnI+PC9wPjxwPiZuYnNwOyBBbmRyZXk8L3A+
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--------------020008020900060402050801
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Well congratulations, Andrey, that's quite a puzzle story!
It sounds like the perfect puzzle for you. I've worked on many projects
that came out to around 100 hours, and I like that size. It's a big
investment, but you live with it for a matter of weeks or months and it
becomes like family. And then it's over and you can relax and enjoy the
memories.
As you know, I find reflection moves to be very interesting, so I am
particularly happy to know that this puzzle is difficult, solvable, and
solved. Would you like to tell us a little more about what you mean
about working with the whole structure, and what you had to keep in your
head that you couldn't write down? Perhaps the best way to ask this is
simply, what advice would you give to someone who might consider
attempting this feat? Clearly lots of macros and preparation. What else?
And these orbits you describe: Are they the lovely intertwined paths of
length 10 that run in straight lines through the 120 cell?
Lastly, what are your thoughts on short solutions? Your solutions always
seem to be very efficient, even when you are not trying. Were you happy
to break half a million twists or was it everything you could do just to
finish in a reasonable time?
Congratulations again,
-Melinda
On 1/30/2014 1:22 AM, andreyastrelin@yahoo.com wrote:
>
> I did it! It took 427287 twists and almost 90 hours by timer. 4C stage
> went without unexpected troubles (after preparing of large set of
> macros including 120deg rotation of the single piece).
>
> Probably it's a most difficult puzzle that I met. It required work
> with structure of the whole 120-cell, and I had to keep it in mind,
> because it's difficult to draw such object on 2D paper...
>
> This puzzle is unique because of multiple parity problems in the web
> of orbits of different dimensions. And I still don't know was it a
> luck that 3C parities were solved by combination of 3 symmetrical
> clusters of flips, or there is really not much freedom of possible
> combinations at that stage.
>
>
> If anybody is going to try this puzzle I can only wish him good
> luck. And a lot of patience...
>
>
> Andrey
>
>
>
>
--------------020008020900060402050801
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
------=_NextPart_000_0016_01CF1DB6.30E437F0
Content-Type: text/plain;
charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Wow!
This is a big one.
Congratulations!
Ed
----- Original Message -----=20
From: andreyastrelin@yahoo.com=20
To: 4D_Cubing@yahoogroups.com=20
Sent: Thursday, January 30, 2014 10:22 AM
Subject: [MC4D] 120Z solved!!!
=20=20=20=20
I did it! It took 427287 twists and almost 90 hours by timer. 4C stage we=
nt without unexpected troubles (after preparing of large set of macros incl=
uding 120deg rotation of the single piece).
Probably it's a most difficult puzzle that I met. It required work with=
structure of the whole 120-cell, and I had to keep it in mind, because it'=
s difficult to draw such object on 2D paper...
This puzzle is unique because of multiple parity problems in the web of=
orbits of different dimensions. And I still don't know was it a luck that =
3C parities were solved by combination of 3 symmetrical clusters of flips, =
or there is really not much freedom of possible combinations at that stage.
If anybody is going to try this puzzle I can only wish him good luck. A=
nd a lot of patience...
Andrey
=20=20
------=_NextPart_000_0016_01CF1DB6.30E437F0
Content-Type: text/html;
charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
=EF=BB=BF
I did it! It took 427287 twists and almost 90 hours by timer. 4C stage=
went=20
without unexpected troubles (after preparing of large set of macros inclu=
ding=20
120deg rotation of the single piece).
Probably it's a most difficult puzzle that I met. It=20
required work with structure of the whole 120-cell, and I had t=
o=20
keep it in mind, because it's difficult to draw such object on 2D paper..=
.
This puzzle is unique because of multiple parity problems in th=
e web=20
of orbits of different dimensions. And I still don't know was it a luck t=
hat=20
3C parities were solved by combination of 3 symmetrical clusters of flips=
, or=20
there is really not much freedom of possible combinations at that stage.<=
/P>
If anybody is going to try this puzzle I can only wis=
h him=20
good luck. And a lot of patience...
Andrey
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
TWVsaW5kYSwgdGhhbmsgeW91IQ0KIExldCdzIGJlZ2luIHdpdGggMkMuIEl0J3MgZWFzeSB0
byBmaW5kIHRoYXQgc2ltcGxlIGNvbW11dGF0b3IgZ2l2ZXMgMy1sb29wIG9mIDJDIGluIG9u
ZSBsaW5lLCBzbyBvbmUgbWF5IHRyeSB0byBzb2x2ZSBwdXp6bGUgbGluZSBieSBsaW5lIChs
aWtlIHdlIGRvIHdpdGggc2ltcGxlIGVkZ2Utcm90YXRpbmcgTVQpLiBCdXQgc29vbiBoZSBm
aW5kcyB0aGF0IHNvbWUgbGluZSBoYXZlIG9kZCBwZXJtdXRhdGlvbiBvZiBwaWVjZXMuLi4g
YW5kIHRoZXJlIGJlZ2lucyB0aGUgZnVuIQ0KICAgRmxpcHBpbmcgb2Ygb25lIGNlbGwgY2hh
bmdlcyBwYXJpdHkgb2YgcGVybXV0YXRpb25zIG9mIGFsbCBzaXggbGluZXMgcGFzc2luZyB0
aHJvdWdoIGl0LiBTbyB3aGVuIHlvdSBzb2x2ZSBvbmUgbGluZSwgeW91IHB1c2ggZGlzb3Jk
ZXIgdG8gZml2ZSBvdGhlcnMuIEFuZCB3aGF0IHdlIGNhbiB0cnkgaXMgdG8gc2hyaW5rIGRp
c29yZGVyIGFyZWEgZnJvbSB3aG9sZSBwdXp6bGUgdG8gc21hbGxlciBiYWxsLi4uIHRvIG9u
ZSBjZWxsLi4uIHRvIG5vdGhpbmcuDQogICBDb25zaWRlciBvbmUgcGxhbmUgKD0gc3BoZXJl
IGluIDNELCA9IGVxdWF0b3Igc3BoZXJlKS4gSXQgY29udGFpbnMgNiBsaW5lcywgYW5kIGV2
ZXJ5IGNlbGwgaW4gcGxhbmUgYmVsb25ncyB0byB0d28gb2YgdGhlbS4gU28gc3VtIG9mIHBh
cml0aWVzIG9mIHRoZXNlIGxpbmVzIGlzIGFsd2F5cyB6ZXJvLiAoRmlyc3QgYWR2aWNlOiBk
cmF3IGEgd2ViIG9mIGxpbmVzIGluIG9uZSBwbGFuZSBhbmQgcmVtZW1iZXIgaXQuIFlvdSB3
aWxsIG5lZWQgaXQgdmVyeSBvZnRlbikuIE91ciBmaXJzdCB0YXNrIHdpbGwgYmUgdG8gY2xl
YXIgb25lIHBsYW5lLg0KICAgWW91IGRvbid0IHdhbnQgdG8gZ2V0IGxvc3QgaW4gMTIwLWNl
bGwgc3VyZmFjZSwgc28gSSBzdWdnZXN0IHRvIHNlbGVjdCAiY2VudHJhbCIgY2VsbCAoZm9y
IGV4YW1wbGUsIHRoZSBjZWxsIHRoYXQgaXMgaW4gdGhlIGNlbnRlciBmcm9tIHRoZSBzdGFy
dCkgYW5kIHJlbWVtYmVyIGl0LiBZb3UgbWF5IGdpdmUgaXQgc29tZSBzcGVjaWFsIGNvbG9y
IGlmIHlvdSB3YW50LiBJIGRpZG4ndC4gVGhlbiB5b3UgbmVlZCB0byBmaW5kICJwb2xhciBw
bGFuZSIgZm9yIHRoaXMgY2VsbCAodGhhdCBpcyBlcXVhdG9yIGlmIHlvdSBjb25zaWRlciBj
ZW50cmFsIGNlbGwgYXMgYSBwb2xlKS4gSXQgd2lsbCBiZSBvdXIgZmlyc3QgcGxhbmUgdG8g
d29yay4NCiAgIFNlbGVjdCBhbnkgbGluZSBvbiBpdC4gRWFjaCBvZiA1IG90aGVyIGxpbmVz
IGluIHRoZSBwbGFuZSBpbnRlcnNlY3RzIHRoaXMgb25lLCBzbyB5b3UgY2FuIHNvbHZlIHBh
cml0eSBkaXNvcmRlcnMgYnkgc2luZ2xlIGZsaXBzIG9mIGNlbGxzIG9uIHRoZSBzZWxlY3Rl
ZCBsaW5lLiBXaGVuIHlvdSBzb2x2ZSA1IGxpbmVzLCB0aGUgc2l4dGggd2lsbCBoYXZlIHpl
cm8gcGFyaXR5Lg0KICAgV2hlbiB0aGUgcGxhbmUgaXMgc29sdmVkLCBzb2x2ZSBvbmUgb2Yg
aGFsdmVzIG9mIHB1enpsZSAodXNpbmcgY29tbXV0YXRvcnMpIGJ5IG1vdmluZyBkaXNvcmRl
cnMgdG8gYW5vdGhlciBoYWxmLiANCiAgIFNlbGVjdCBhbm90aGVyIHBsYW5lIHRoYXQgaXMg
Y2xvc2UgdG8gZmlyc3Qgb25lLiBJdCBpbnRlcnNlY3RzIHdpdGggdW5zb2x2ZWQgYmFsbCBi
eSBwZW50YWdvbiwgYW5kIHlvdSBjYW4gc29sdmUgaXRzIHNpZGVzIG9uZSBieSBvbmUuIFNv
IHlvdXIgdW5zb2x2ZWQgYXJlYSBpcyBzaHJpbmtpbmcuLi4gU29vbiB5b3Ugd2lsbCBzZWUg
dGhlIHNpbmdsZSBjZWxsIHdoZXJlIHNpeCB3cm9uZyBsaW5lcyBhcmUgaW50ZXJzZWN0aW5n
LiBGbGlwIHRoaXMgY2VsbCBhbmQgZmluaXNoIDJDIHN0YWdlLg0KICAgSW4gM0Mgc2l0dWF0
aW9uIGlzIHNpbWlsYXIsIGJ1dCB0aGUgb3JiaXQgb2YgM0MgcGllY2UgaXMgdGhlIHBsYW5l
LiBFdmVyeSBjZWxsIGlzIGludGVyc2VjdGVkIGJ5IDE1IHBsYW5lcywgYW5kIGl0cyBmbGlw
cGluZyBjaGFuZ2VzIHBhcml0eSBvZiBhbGwgdGhlc2UgcGxhbmVzLiBTbyBhdCBmaXJzdCBJ
IHN1Z2dlc3QgdG8gc2VsZWN0IHNvbWUgaGFsZi1saW5lICg1IGNlbGxzIGluIHRoZSBsaW5l
IGdvaW5nIHRocm91Z2ggdGhlIGNlbnRlcikgYW5kIG1vdmUgZGlzb3JkZXJzIGluIGFsbCBw
bGFuZXMgdG8gdGhpcyBhcmVhIG9yIGNsb3NlIHRvIGl0LiBJdCBpcyBub3QgZWFzeSwgZ2Vv
bWV0cnkgb2YgdGhlIG9yYml0IGlzIG5vdCBpbnR1aXRpdmVseSBjbGVhciwgc28geW91IHNo
b3VsZCBjYXJlZnVsbHkgc2VsZWN0IHBhdGhzIGZvciB0aGUgcGllY2VzIHdoZW4gbW92ZSB0
aGVtIHRvIHRoZWlyIHBsYWNlLiBCdXQgZmluYWxseSB5b3UgZ2V0IG1vc3Qgb2YgM0MgcGll
Y2VzIGluIHBsYWNlLCBhbmQgb25seSBlZGdlcyBvZiB0aGUgc2VsZWN0ZWQgY2VsbHMgbWF5
IGJlIHN3YXBwZWQgKHBsdXMgZml2ZSBvdGhlciBwYWlycyBpbiBwbGFuZXMgdGhhdCBhcmUg
bm90IGludGVyc2VjdGVkIHdpdGggdGhlIHNlbGVjdGVkIGxpbmUpLiBBbmQgbm93IHRoZXJl
IGl0IGlzIHRoZSBtb3N0IGRpZmZpY3VsdCBwYXJ0LiANCiAgIFlvdSBuZWVkIHRvIGZpbmQg
c29tZSAiY2x1c3RlcnMiIGZsaXBwaW5nIG9mIHdoaWNoIHdpbGwgbm90IGNoYW5nZSBwYXJp
dGllcyBvZiBsaW5lcywgYnV0IGNoYW5nZXMgcGFyaXRpZXMgb2Ygc29tZSBwbGFuZXMuIENs
dXN0ZXJzIHRoYXQgSSBmb3VuZCBhcmUganVzdCAibGF5ZXJzIiBvZiAxMjAtY2VsbDogMTIg
Y2VsbHMgYWRqYWNlbnQgdG8gb25lLCBvciAyMCBjZWxscyBvZiB0aGUgdGhpcmQgbGF5ZXIu
IEZsaXBwaW5nIG9mIHRoZSBmaXJzdCBjbHVzdGVyIGNoYW5nZXMgcGFyaXR5IG9mIDMyIHBs
YW5lcyBhbmQgdGhlIHNlY29uZCBjaGFuZ2VzIDI0IHBsYW5lcy4gSW4gdGhlIHBvbGFyIHBp
Y3R1cmUgdGhleSBsb29rIGxpa2UgM3JkIGFuZCA0dGggbGF5ZXJzIGZvciB0aGUgZmlyc3Qg
Y2x1c3RlciBhbmQgc2Vjb25kIGFuZCA0dGggbGF5ZXJzIGZvciB0aGUgc2Vjb25kIG9uZS4g
VG8gYXBwbHkgdGhlbSB0byB5b3VyIHNpdHVhdGlvbiB5b3UgbmVlZCB0byBidWlsZCB0aGUg
cG9sYXIgcGljdHVyZSBvZiBkaXNvcmRlcmVkIHBsYW5lcyAodGhhdCBpcywgZmluZCBwb2xh
ciBjZWxscyBmb3IgdGhlbSkgYW5kIGRlY29tcG9zZSB0aGUgc2V0IG9mIHRoZXNlIGNlbGxz
IHRvIHNwaGVyaWNhbCBjbHVzdGVycy4gSW4gdGhpcyBzdGFnZSBJIGdvdCBwaWN0dXJlIHdp
dGggdGhpcmQgb3JkZXIgc3ltbWV0cnksIHNvIGNlbnRlcnMgb2YgY2x1c3RlcnMgd2VyZSBs
aW1pdGVkIHRvIHRoZSBzeW1tZXRyeSBheGlzLiBBZnRlciB0aGUgc2Vjb25kIGF0dGVtcHQg
SSBnb3QgemVybyBwYXJpdGllcyBvZiBhbGwgcGxhbmVzIGFuZCBjb3VsZCBmaW5pc2ggMkMg
YW5kIDNDIHN0YWdlcy4NCiAgIFdpdGggNEMgaXQncyBlYXN5IHRvIGJ1aWxkIDMtY3ljbGUg
anVtcGluZyBkaWFnb25hbGx5IGFjcm9zcyB0d28gY2VsbHMsIGJ1dCBpdCdzIGRpZmZpY3Vs
dCB0byB3b3JrIHdpdGggaXQuIFNvIHlvdSBoYXZlIHRvIGZpbmQgYSBwYXRoIHRoYXQgbW92
ZXMgYSA0QyB0byBhZGphY2VudCBvbmUgKDUgZmxpcHMpIC0gaXQgd2lsbCBoZWxwIHlvdSB0
byBidWlsZCAzLWN5Y2xlIGZvciBwaWVjZXMgaW4gb25lIGZhY2UuIE15IG1hY3JvIGZvciBp
dCB3YXMgMjMyIGZsaXBzIGxvbmcuIFRoZW4gYnVpbGQgYSBwYXRoIHRoYXQgcmV0dXJucyA0
QyB0byBpdHMgcGxhY2Ugcm90YXRlZCAoOCBmbGlwcyBsb25nIHBhdGggZXhpc3RzKSAtIHlv
dSBnZXQgcm90YXRpb24gb2YgdHdvIG9wcG9zaXRlIHBpZWNlcyBvZiBvbmUgY2VsbC4gQW5k
IHRoZW4geW91IG5lZWQgYSBwYXRoIHRoYXQgcmV0dXJucyA0QyB0byBpdHMgcGxhY2UgaW4g
d3Jvbmcgb3JpZW50YXRpb24uIEkgZm91bmQgMTctZmxpcCBwYXRoIGZvciBpdCBhbmQgZ290
IG1hY3JvIGZvciBmbGlwcGluZyBvZiB0d28gb3Bwb3NpdGUgcGllY2VzLiBDb21tdXRhdG9y
IG9mIGZsaXBwaW5nIGFuZCByb3RhdGlvbiBnaXZlcyAzLXJvdGF0aW9uIG9mIHRoZSBzaW5n
bGUgcGllY2UsIGJ1dCBpdCdzIGxvbmcgKGFib3V0IDMwMCBmbGlwcykuDQogICBBbmQgaXQn
cyBlbm91Z2ggdG8gZmluaXNoIHRoZSBzb2x2ZS4gU29tZSBwcm9ibGVtcyB3aWxsIGJlIGlu
IHRoZSBlbmQgd2hlbiB5b3UgY2FuJ3QgZmluZCBhIHBhaXIgb2Ygb3Bwb3NpdGUgY2VsbHMg
dG8gZmxpcCwgYnV0IGl0IGlzIHNvbHZhYmxlIGJ5IGV4dHJhIG1vdmVzLg0KICAgQmVsaWV2
ZSBvZiBub3QsIGJ1dCBJIGNvbnNpZGVyIG15IHNvbHZlIGFzIHNob3J0IG9uZSA6KSBJIHRy
aWVkIHRvIHVzZSBzaG9ydCBtYWNyb3Mgd2hlbiBpdCB3YXMgcG9zc2libGUgYW5kIGxlYXZl
IGxvbmcgb25lcyBvbmx5IGZvciBzaXR1YXRpb25zIHdoZW4gaXQgd2FzIGRpZmZpY3VsdCB0
byBhcHBseSBzaG9ydCB2ZXJzaW9ucy4gIA0KICAgICANCiAgIEFuZHJleQ0K
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+TWVsaW5kYSwgdGhhbmsgeW91ITwvcD48cD5MZXQmIzM5O3MgYmVnaW4gd2l0aCAyQy4g
SXQmIzM5O3MgZWFzeSB0byBmaW5kIHRoYXQgc2ltcGxlIGNvbW11dGF0b3IgZ2l2ZXMgMy1s
b29wIG9mIDJDIGluIG9uZSBsaW5lLCBzbyBvbmUgbWF5IHRyeSB0byZuYnNwO3NvbHZlIHB1
enpsZSBsaW5lIGJ5IGxpbmUgKGxpa2Ugd2UgZG8gd2l0aCZuYnNwO3NpbXBsZSZuYnNwO2Vk
Z2Utcm90YXRpbmcgTVQpLiBCdXQgc29vbiBoZSBmaW5kcyB0aGF0IHNvbWUgbGluZSBoYXZl
IG9kZCBwZXJtdXRhdGlvbiBvZiBwaWVjZXMuLi4gYW5kIHRoZXJlIGJlZ2lucyB0aGUgZnVu
ITwvcD48cD4mbmJzcDsgRmxpcHBpbmcgb2Ygb25lIGNlbGwgY2hhbmdlcyBwYXJpdHkgb2Yg
cGVybXV0YXRpb25zIG9mIGFsbCBzaXggbGluZXMgcGFzc2luZyB0aHJvdWdoIGl0LiBTbyB3
aGVuIHlvdSBzb2x2ZSBvbmUgbGluZSwgeW91IHB1c2ggZGlzb3JkZXIgdG8gZml2ZSBvdGhl
cnMuIEFuZCB3aGF0IHdlIGNhbiB0cnkgaXMgdG8mbmJzcDtzaHJpbmsgZGlzb3JkZXIgYXJl
YSBmcm9tIHdob2xlIHB1enpsZSB0byBzbWFsbGVyIGJhbGwuLi4gdG8gb25lIGNlbGwuLi4g
dG8gbm90aGluZy48L3A+PHA+Jm5ic3A7IENvbnNpZGVyIG9uZSBwbGFuZSAoPSBzcGhlcmUg
aW4gM0QsID0mbmJzcDtlcXVhdG9yIHNwaGVyZSkuIEl0IGNvbnRhaW5zIDYgbGluZXMsIGFu
ZCBldmVyeSBjZWxsJm5ic3A7aW4gcGxhbmUgYmVsb25ncyB0byB0d28gb2YgdGhlbS4gU28g
c3VtIG9mIHBhcml0aWVzIG9mIHRoZXNlIGxpbmVzIGlzIGFsd2F5cyB6ZXJvLiAoRmlyc3Qg
YWR2aWNlOiBkcmF3IGEgd2ViIG9mIGxpbmVzIGluIG9uZSZuYnNwO3BsYW5lIGFuZCByZW1l
bWJlciBpdC4gWW91IHdpbGwgbmVlZCBpdCB2ZXJ5IG9mdGVuKS4gT3VyIGZpcnN0IHRhc2sg
d2lsbCBiZSB0byBjbGVhciBvbmUgcGxhbmUuPC9wPjxwPiZuYnNwOyBZb3UgZG9uJiMzOTt0
IHdhbnQgdG8gZ2V0IGxvc3QgaW4gMTIwLWNlbGwgc3VyZmFjZSwgc28gSSBzdWdnZXN0IHRv
IHNlbGVjdCAmcXVvdDtjZW50cmFsJnF1b3Q7IGNlbGwgKGZvciBleGFtcGxlLCB0aGUgY2Vs
bCB0aGF0IGlzIGluIHRoZSBjZW50ZXIgZnJvbSB0aGUgc3RhcnQpIGFuZCByZW1lbWJlciBp
dC4gWW91IG1heSBnaXZlIGl0IHNvbWUgc3BlY2lhbCBjb2xvciBpZiB5b3Ugd2FudC4gSSBk
aWRuJiMzOTt0LiBUaGVuIHlvdSBuZWVkIHRvIGZpbmQgJnF1b3Q7cG9sYXIgcGxhbmUmcXVv
dDsgZm9yIHRoaXMgY2VsbCAodGhhdCBpcyBlcXVhdG9yIGlmIHlvdSBjb25zaWRlciBjZW50
cmFsIGNlbGwgYXMgYSBwb2xlKS4gSXQgd2lsbCBiZSBvdXIgZmlyc3QgcGxhbmUgdG8gd29y
ay48L3A+PHA+Jm5ic3A7IFNlbGVjdCBhbnkgbGluZSBvbiBpdC4gRWFjaCBvZiA1IG90aGVy
IGxpbmVzIGluIHRoZSBwbGFuZSBpbnRlcnNlY3RzIHRoaXMgb25lLCBzbyB5b3UgY2FuIHNv
bHZlIHBhcml0eSBkaXNvcmRlcnMgYnkgc2luZ2xlIGZsaXBzIG9mJm5ic3A7Y2VsbHMgb24g
dGhlJm5ic3A7c2VsZWN0ZWQmbmJzcDtsaW5lLiBXaGVuIHlvdSBzb2x2ZSA1IGxpbmVzLCB0
aGUgc2l4dGggd2lsbCBoYXZlIHplcm8gcGFyaXR5LjwvcD48cD4mbmJzcDsgV2hlbiB0aGUg
cGxhbmUgaXMgc29sdmVkLCBzb2x2ZSBvbmUgb2YgaGFsdmVzIG9mIHB1enpsZSAodXNpbmcg
Y29tbXV0YXRvcnMpIGJ5IG1vdmluZyBkaXNvcmRlcnMgdG8gYW5vdGhlciBoYWxmLiZuYnNw
OzwvcD48cD4mbmJzcDsgU2VsZWN0IGFub3RoZXIgcGxhbmUgdGhhdCBpcyBjbG9zZSB0byBm
aXJzdCBvbmUuIEl0Jm5ic3A7aW50ZXJzZWN0cyB3aXRoIHVuc29sdmVkJm5ic3A7YmFsbCBi
eSZuYnNwO3BlbnRhZ29uLCBhbmQgeW91IGNhbiBzb2x2ZSBpdHMgc2lkZXMgb25lIGJ5IG9u
ZS4gU28geW91ciB1bnNvbHZlZCBhcmVhIGlzIHNocmlua2luZy4uLiZuYnNwO1Nvb24geW91
IHdpbGwgc2VlIHRoZSZuYnNwO3NpbmdsZSBjZWxsJm5ic3A7d2hlcmUgc2l4IHdyb25nIGxp
bmVzIGFyZSBpbnRlcnNlY3RpbmcuIEZsaXAgdGhpcyBjZWxsIGFuZCBmaW5pc2ggMkMgc3Rh
Z2UuPC9wPjxwPiZuYnNwOyBJbiAzQyBzaXR1YXRpb24gaXMgc2ltaWxhciwgYnV0IHRoZSBv
cmJpdCBvZiAzQyZuYnNwO3BpZWNlJm5ic3A7aXMgdGhlIHBsYW5lLiBFdmVyeSBjZWxsIGlz
IGludGVyc2VjdGVkIGJ5IDE1IHBsYW5lcywgYW5kIGl0cyBmbGlwcGluZyBjaGFuZ2VzIHBh
cml0eSZuYnNwO29mIGFsbCB0aGVzZSBwbGFuZXMuIFNvIGF0IGZpcnN0IEkgc3VnZ2VzdCB0
byBzZWxlY3QmbmJzcDtzb21lJm5ic3A7aGFsZi1saW5lICg1IGNlbGxzIGluIHRoZSBsaW5l
IGdvaW5nIHRocm91Z2gmbmJzcDt0aGUgY2VudGVyKSBhbmQgbW92ZSBkaXNvcmRlcnMmbmJz
cDtpbiBhbGwgcGxhbmVzIHRvIHRoaXMgYXJlYSBvciBjbG9zZSB0byBpdC4gSXQgaXMgbm90
IGVhc3ksIGdlb21ldHJ5IG9mIHRoZSBvcmJpdCBpcyBub3QmbmJzcDtpbnR1aXRpdmVseSBj
bGVhciwgc28geW91IHNob3VsZCBjYXJlZnVsbHkgc2VsZWN0IHBhdGhzIGZvciB0aGUgcGll
Y2VzIHdoZW4gbW92ZSB0aGVtIHRvIHRoZWlyIHBsYWNlLiBCdXQgZmluYWxseSB5b3UgZ2V0
IG1vc3Qgb2YgM0MgcGllY2VzIGluIHBsYWNlLCBhbmQgb25seSBlZGdlcyBvZiB0aGUgc2Vs
ZWN0ZWQgY2VsbHMgbWF5IGJlIHN3YXBwZWQgKHBsdXMgZml2ZSBvdGhlciBwYWlycyBpbiBw
bGFuZXMgdGhhdCBhcmUgbm90IGludGVyc2VjdGVkIHdpdGggdGhlIHNlbGVjdGVkIGxpbmUp
LiBBbmQgbm93IHRoZXJlIGl0IGlzIHRoZSBtb3N0IGRpZmZpY3VsdCBwYXJ0LiZuYnNwOzwv
cD48cD4mbmJzcDsgWW91IG5lZWQgdG8gZmluZCBzb21lICZxdW90O2NsdXN0ZXJzJnF1b3Q7
IGZsaXBwaW5nIG9mIHdoaWNoIHdpbGwgbm90IGNoYW5nZSBwYXJpdGllcyBvZiBsaW5lcywg
YnV0IGNoYW5nZXMgcGFyaXRpZXMgb2Ygc29tZSBwbGFuZXMuIENsdXN0ZXJzIHRoYXQgSSBm
b3VuZCBhcmUganVzdCAmcXVvdDtsYXllcnMmcXVvdDsgb2YgMTIwLWNlbGw6IDEyIGNlbGxz
IGFkamFjZW50IHRvIG9uZSwgb3IgMjAgY2VsbHMgb2YgdGhlIHRoaXJkIGxheWVyLiBGbGlw
cGluZyBvZiB0aGUgZmlyc3QgY2x1c3RlciBjaGFuZ2VzIHBhcml0eSBvZiAzMiBwbGFuZXMg
YW5kIHRoZSBzZWNvbmQgY2hhbmdlcyAyNCBwbGFuZXMuIEluIHRoZSBwb2xhciBwaWN0dXJl
IHRoZXkgbG9vayBsaWtlIDNyZCBhbmQgNHRoIGxheWVycyBmb3IgdGhlIGZpcnN0IGNsdXN0
ZXIgYW5kIHNlY29uZCBhbmQgNHRoJm5ic3A7bGF5ZXJzIGZvciB0aGUgc2Vjb25kIG9uZS4m
bmJzcDtUbyBhcHBseSB0aGVtIHRvIHlvdXIgc2l0dWF0aW9uIHlvdSBuZWVkIHRvIGJ1aWxk
IHRoZSBwb2xhciBwaWN0dXJlIG9mJm5ic3A7ZGlzb3JkZXJlZCBwbGFuZXMgKHRoYXQgaXMs
IGZpbmQgcG9sYXIgY2VsbHMgZm9yIHRoZW0pIGFuZCBkZWNvbXBvc2UgdGhlIHNldCBvZiB0
aGVzZSZuYnNwO2NlbGxzIHRvIHNwaGVyaWNhbCBjbHVzdGVycy4gSW4gdGhpcyBzdGFnZSBJ
IGdvdCBwaWN0dXJlJm5ic3A7d2l0aCB0aGlyZCBvcmRlciBzeW1tZXRyeSwgc28gY2VudGVy
cyBvZiBjbHVzdGVycyB3ZXJlIGxpbWl0ZWQgdG8gdGhlIHN5bW1ldHJ5IGF4aXMuIEFmdGVy
IHRoZSBzZWNvbmQgYXR0ZW1wdCBJIGdvdCB6ZXJvIHBhcml0aWVzIG9mIGFsbCBwbGFuZXMg
YW5kIGNvdWxkIGZpbmlzaCZuYnNwOzJDIGFuZCAzQyBzdGFnZXMuPC9wPjxwPiZuYnNwOyBX
aXRoIDRDIGl0JiMzOTtzIGVhc3kgdG8gYnVpbGQgMy1jeWNsZSBqdW1waW5nIGRpYWdvbmFs
bHkgYWNyb3NzIHR3byBjZWxscywgYnV0IGl0JiMzOTtzIGRpZmZpY3VsdCB0byB3b3JrIHdp
dGggaXQuIFNvIHlvdSBoYXZlIHRvIGZpbmQgYSBwYXRoIHRoYXQgbW92ZXMgYSZuYnNwOzRD
IHRvIGFkamFjZW50IG9uZSAoNSBmbGlwcykgLSBpdCB3aWxsJm5ic3A7aGVscCB5b3UgdG8g
YnVpbGQgMy1jeWNsZSBmb3ImbmJzcDtwaWVjZXMgaW4gb25lIGZhY2UuIE15IG1hY3JvIGZv
ciBpdCB3YXMgMjMyJm5ic3A7ZmxpcHMgbG9uZy4gVGhlbiBidWlsZCBhIHBhdGggdGhhdCBy
ZXR1cm5zIDRDIHRvIGl0cyBwbGFjZSByb3RhdGVkICg4IGZsaXBzIGxvbmcgcGF0aCBleGlz
dHMpIC0geW91IGdldCByb3RhdGlvbiBvZiB0d28gb3Bwb3NpdGUgcGllY2VzIG9mIG9uZSBj
ZWxsLiBBbmQmbmJzcDt0aGVuIHlvdSBuZWVkIGEgcGF0aCB0aGF0IHJldHVybnMgNEMgdG8g
aXRzIHBsYWNlIGluIHdyb25nIG9yaWVudGF0aW9uLiBJIGZvdW5kIDE3LWZsaXAgcGF0aCBm
b3IgaXQgYW5kIGdvdCBtYWNybyBmb3IgZmxpcHBpbmcgb2YgdHdvIG9wcG9zaXRlIHBpZWNl
cy4mbmJzcDtDb21tdXRhdG9yIG9mIGZsaXBwaW5nIGFuZCByb3RhdGlvbiBnaXZlcyAzLXJv
dGF0aW9uIG9mIHRoZSBzaW5nbGUgcGllY2UsIGJ1dCZuYnNwO2l0JiMzOTtzIGxvbmcgKGFi
b3V0IDMwMCZuYnNwO2ZsaXBzKS48L3A+PHA+Jm5ic3A7IEFuZCBpdCYjMzk7cyBlbm91Z2gg
dG8mbmJzcDtmaW5pc2ggdGhlIHNvbHZlLiBTb21lIHByb2JsZW1zIHdpbGwgYmUgaW4gdGhl
Jm5ic3A7ZW5kIHdoZW4geW91IGNhbiYjMzk7dCBmaW5kIGEgcGFpciBvZiBvcHBvc2l0ZSBj
ZWxscyB0byBmbGlwLCBidXQgaXQgaXMgc29sdmFibGUgYnkgZXh0cmEgbW92ZXMuPC9wPjxw
PiZuYnNwOyBCZWxpZXZlIG9mIG5vdCwgYnV0IEkgY29uc2lkZXIgbXkgc29sdmUgYXMgc2hv
cnQgb25lJm5ic3A7OikgSSB0cmllZCB0byB1c2UmbmJzcDtzaG9ydCBtYWNyb3Mgd2hlbiBp
dCB3YXMgcG9zc2libGUgYW5kIGxlYXZlIGxvbmcgb25lcyBvbmx5IGZvciBzaXR1YXRpb25z
IHdoZW4gaXQgd2FzIGRpZmZpY3VsdCB0byBhcHBseSBzaG9ydCB2ZXJzaW9ucy4mbmJzcDsm
bmJzcDs8L3A+PHA+Jm5ic3A7ICZuYnNwOyZuYnNwOzwvcD48cD4mbmJzcDsgQW5kcmV5PC9w
Pg==
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
------=_NextPart_000_0006_01CF1DE7.61612100
Content-Type: text/plain;
charset="utf-8"
Content-Transfer-Encoding: quoted-printable
Wow! Sounds not easy at all. I will finishing a bigger MT soon. The "hyp {1=
0,3} v001" with about 15'000 twists (8'000 for you). Hence: much easier.
Have you all heard that they have found an Hamiltonian through Rubik's 3^3 =
?
http://bruce.cubing.net/ham333/rubikhamiltonexplanation.html
Regards
Ed
----- Original Message -----=20
From: andreyastrelin@yahoo.com=20
To: 4D_Cubing@yahoogroups.com=20
Sent: Thursday, January 30, 2014 5:12 PM
Subject: Re: [MC4D] 120Z solved!!!
=20=20=20=20
Melinda, thank you!
Let's begin with 2C. It's easy to find that simple commutator gives 3-loo=
p of 2C in one line, so one may try to solve puzzle line by line (like we d=
o with simple edge-rotating MT). But soon he finds that some line have odd =
permutation of pieces... and there begins the fun!
Flipping of one cell changes parity of permutations of all six lines pa=
ssing through it. So when you solve one line, you push disorder to five oth=
ers. And what we can try is to shrink disorder area from whole puzzle to sm=
aller ball... to one cell... to nothing.
Consider one plane (=3D sphere in 3D, =3D equator sphere). It contains =
6 lines, and every cell in plane belongs to two of them. So sum of parities=
of these lines is always zero. (First advice: draw a web of lines in one p=
lane and remember it. You will need it very often). Our first task will be =
to clear one plane.
You don't want to get lost in 120-cell surface, so I suggest to select =
"central" cell (for example, the cell that is in the center from the start)=
and remember it. You may give it some special color if you want. I didn't.=
Then you need to find "polar plane" for this cell (that is equator if you =
consider central cell as a pole). It will be our first plane to work.
Select any line on it. Each of 5 other lines in the plane intersects th=
is one, so you can solve parity disorders by single flips of cells on the s=
elected line. When you solve 5 lines, the sixth will have zero parity.
When the plane is solved, solve one of halves of puzzle (using commutat=
ors) by moving disorders to another half.=20
Select another plane that is close to first one. It intersects with uns=
olved ball by pentagon, and you can solve its sides one by one. So your uns=
olved area is shrinking... Soon you will see the single cell where s ix wro=
ng lines are intersecting. Flip this cell and finish 2C stage.
In 3C situation is similar, but the orbit of 3C piece is the plane. Eve=
ry cell is intersected by 15 planes, and its flipping changes parity of all=
these planes. So at first I suggest to select some half-line (5 cells in t=
he line going through the center) and move disorders in all planes to this =
area or close to it. It is not easy, geometry of the orbit is not intuitive=
ly clear, so you should carefully select paths for the pieces when move the=
m to their place. But finally you get most of 3C pieces in place, and only =
edges of the selected cells may be swapped (plus five other pairs in planes=
that are not intersected with the selected line). And now there it is the =
most difficult part.=20
You need to find some "clusters" flipping of which will not change pari=
ties of lines, but changes parities of some planes. Clusters that I found a=
re just & quot;layers" of 120-cell: 12 cells adjacent to one, or 20 cells o=
f the third layer. Flipping of the first cluster changes parity of 32 plane=
s and the second changes 24 planes. In the polar picture they look like 3rd=
and 4th layers for the first cluster and second and 4th layers for the sec=
ond one. To apply them to your situation you need to build the polar pictur=
e of disordered planes (that is, find polar cells for them) and decompose t=
he set of these cells to spherical clusters. In this stage I got picture wi=
th third order symmetry, so centers of clusters were limited to the symmetr=
y axis. After the second attempt I got zero parities of all planes and coul=
d finish 2C and 3C stages.
With 4C it's easy to build 3-cycle jumping diagonally across two cells,=
but it's difficult to work with it. So you have to find a path that moves =
a 4C to adjacent one (5 flips) - it will help you to build 3-cycle for piec=
es in one face . My macro for it was 232 flips long. Then build a path that=
returns 4C to its place rotated (8 flips long path exists) - you get rotat=
ion of two opposite pieces of one cell. And then you need a path that retur=
ns 4C to its place in wrong orientation. I found 17-flip path for it and go=
t macro for flipping of two opposite pieces. Commutator of flipping and rot=
ation gives 3-rotation of the single piece, but it's long (about 300 flips)=
.
And it's enough to finish the solve. Some problems will be in the end w=
hen you can't find a pair of opposite cells to flip, but it is solvable by =
extra moves.
Believe of not, but I consider my solve as short one :) I tried to use =
short macros when it was possible and leave long ones only for situations w=
hen it was difficult to apply short versions.=20=20
=20=20=20=20=20=20
Andrey
=20=20
------=_NextPart_000_0006_01CF1DE7.61612100
Content-Type: text/html;
charset="utf-8"
Content-Transfer-Encoding: quoted-printable
=EF=BB=BF
Melinda, thank you!
Let's begin with 2C. It's easy to find that simple commutator gives 3-=
loop=20
of 2C in one line, so one may try to solve puzzle line by line (like=
we=20
do with simple edge-rotating MT). But soon he finds that some l=
ine=20
have odd permutation of pieces... and there begins the fun!
Flipping of one cell changes parity of permutations of all six =
lines=20
passing through it. So when you solve one line, you push disorder to five=
=20
others. And what we can try is to shrink disorder area from whole pu=
zzle=20
to smaller ball... to one cell... to nothing.
Consider one plane (=3D sphere in 3D, =3D equator sphere).=
It=20
contains 6 lines, and every cell in plane belongs to two of them. So=
sum=20
of parities of these lines is always zero. (First advice: draw a web of l=
ines=20
in one plane and remember it. You will need it very often). Our firs=
t=20
task will be to clear one plane.
You don't want to get lost in 120-cell surface, so I suggest to=
=20
select "central" cell (for example, the cell that is in the center from t=
he=20
start) and remember it. You may give it some special color if you want. I=
=20
didn't. Then you need to find "polar plane" for this cell (that is equato=
r if=20
you consider central cell as a pole). It will be our first plane to work.=
Select any line on it. Each of 5 other lines in the plane inter=
sects=20
this one, so you can solve parity disorders by single flips of cells=
on=20
the selected line. When you solve 5 lines, the sixth will have =
zero=20
parity.
When the plane is solved, solve one of halves of puzzle (using=
=20
commutators) by moving disorders to another half.
Select another plane that is close to first one. It inters=
ects=20
with unsolved ball by pentagon, and you can solve its sides one=
by=20
one. So your unsolved area is shrinking... Soon you will see=20
the single cell where s ix wrong lines are intersecting. Flip t=
his=20
cell and finish 2C stage.
In 3C situation is similar, but the orbit of 3C piece =
;is=20
the plane. Every cell is intersected by 15 planes, and its flipping chang=
es=20
parity of all these planes. So at first I suggest to=20
select some half-line (5 cells in the line going through t=
he=20
center) and move disorders in all planes to this area or close to it=
. It=20
is not easy, geometry of the orbit is not intuitively clear, so you=
=20
should carefully select paths for the pieces when move them to their plac=
e.=20
But finally you get most of 3C pieces in place, and only edges of the sel=
ected=20
cells may be swapped (plus five other pairs in planes that are not inters=
ected=20
with the selected line). And now there it is the most difficult=20
part.
You need to find some "clusters" flipping of which will not cha=
nge=20
parities of lines, but changes parities of some planes. Clusters that I f=
ound=20
are just & quot;layers" of 120-cell: 12 cells adjacent to one, or 20 =
cells=20
of the third layer. Flipping of the first cluster changes parity of 32 pl=
anes=20
and the second changes 24 planes. In the polar picture they look like 3rd=
and=20
4th layers for the first cluster and second and 4th layers for the s=
econd=20
one. To apply them to your situation you need to build the polar pic=
ture=20
of disordered planes (that is, find polar cells for them) and decomp=
ose=20
the set of these cells to spherical clusters. In this stage I got=20
picture with third order symmetry, so centers of clusters were limit=
ed to=20
the symmetry axis. After the second attempt I got zero parities of all pl=
anes=20
and could finish 2C and 3C stages.
With 4C it's easy to build 3-cycle jumping diagonally across tw=
o=20
cells, but it's difficult to work with it. So you have to find a path tha=
t=20
moves a 4C to adjacent one (5 flips) - it will help you to buil=
d=20
3-cycle for pieces in one face . My macro for it was 232 flips =
long.=20
Then build a path that returns 4C to its place rotated (8 flips long path=
=20
exists) - you get rotation of two opposite pieces of one cell. And t=
hen=20
you need a path that returns 4C to its place in wrong orientation. I foun=
d=20
17-flip path for it and got macro for flipping of two opposite=20
pieces. Commutator of flipping and rotation gives 3-rotation of the=
=20
single piece, but it's long (about 300 flips).
And it's enough to finish the solve. Some problems will be=
in=20
the end when you can't find a pair of opposite cells to flip, but it=
is=20
solvable by extra moves.
Believe of not, but I consider my solve as short one :) I =
tried=20
to use short macros when it was possible and leave long ones only fo=
r=20
situations when it was difficult to apply short versions.
Andrey
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
Q29uZ3JhdHVsYXRpb25zIQ0KIA0KDQogQSBjb3VwbGUgb2YgZGF5cyBhZ28sIEkgd2FzIGRl
ZmVhdGVkIGJ5IHRoZSBjb21wbGljYXRlZCAyQyBvcmJpdHMuIEJ1dCBJIGtub3cgdGhpcyBp
cyB0aGUgaGFyZGVzdCBwdXp6bGUgSSd2ZSBzZWVuLCBzbyBJIHdvbid0IGdpdmUgdXAuIFNv
bWUgZGF5IEknbGwgc29sdmUgaXQuDQogDQoNCiBJIGFtIHdyaXRpbmcgc29tZSBQeXRob24g
c2NyaXB0cyB0byBhbmFseXplIHRoZSBwYXJpdHkgc2l0dWF0aW9uIG9mIHRoZSAyQyBhbmQg
M0Mgb3JiaXRzLiBUaGV5IGNhbiBiZSBmb3JtYWxpemVkIGFzIGxpbmVhciBhbGdlYnJhIG1v
ZHVsbyAyLiBJIGluc3RhbGxlZCBTYWdlIHRvIHNvbHZlIGxpbmVhciBzeXN0ZW1zIGluIEdG
KDIpLiBJdCB0dXJucyBvdXQgKHVubGVzcyB0aGUgc2NyaXB0IGlzIHdyb25nKTogDQogDQoN
CiAgIElmIHRoZSBwYXJpdHkgb2YgYWxsIDNDIG9yYml0cyBhcmUgc29sdmVkLCB0aGUgcGFy
aXR5IG9mIHRoZSAyQyBvcmJpdHMgYXJlIGF1dG9tYXRpY2FsbHkgc29sdmVkLiANCiANCg0K
IFRoaXMgcmVzdWx0IHN1cnByaXNlZCBtZSBpbiBhIGdvb2Qgd2F5LiBJIHRoaW5rIEknbGwg
Zm9jdXMgb24gM0MgZmlyc3QgYW5kIHRyeSBzb2x2ZSB0aGVtIChJIHN0aWxsIGRvbid0IGhh
dmUgYW55IGlkZWEgeWV0LCBldmVuIGFmdGVyIHJlYWRpbmcgeW91ciBzdHJhdGVneSkuIFRo
ZW4gZmluZGluZyAyQyB0aHJlZS1jeWNsZXMgd2l0aG91dCBhZmZlY3RpbmcgM0Mgc2hvdWxk
IGJlIGVhc3kuIEknbGwga2VlcCB3b3JraW5nIG9uIGl0Lg0KIA0KDQogQ29uZ3JhdHMgYWdh
aW4hDQogDQoNCiBOYW4NCg==
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+Q29uZ3JhdHVsYXRpb25zITwvcD48cD48YnI+PC9wPjxwPkEgY291cGxlIG9mIGRheXMg
YWdvLCBJIHdhcyBkZWZlYXRlZCBieSB0aGUgY29tcGxpY2F0ZWQgMkMgb3JiaXRzLiBCdXQg
SSBrbm93IHRoaXMgaXMgdGhlIGhhcmRlc3QgcHV6emxlIEkmIzM5O3ZlIHNlZW4sIHNvIEkg
d29uJiMzOTt0IGdpdmUgdXAuIFNvbWUgZGF5IEkmIzM5O2xsIHNvbHZlIGl0LjwvcD48cD48
YnI+PC9wPjxwPkkgYW0gd3JpdGluZyBzb21lIFB5dGhvbiBzY3JpcHRzIHRvIGFuYWx5emUg
dGhlIHBhcml0eSBzaXR1YXRpb24gb2YgdGhlIDJDIGFuZCAzQyBvcmJpdHMuIFRoZXkgY2Fu
IGJlIGZvcm1hbGl6ZWQgYXMgbGluZWFyIGFsZ2VicmEgbW9kdWxvIDIuIEkgaW5zdGFsbGVk
IFNhZ2UgdG8gc29sdmUgbGluZWFyIHN5c3RlbXMgaW4gR0YoMikuIEl0IHR1cm5zIG91dCAo
dW5sZXNzIHRoZSBzY3JpcHQgaXMgd3JvbmcpOiZuYnNwOzwvcD48cD48YnI+PC9wPjxwPiZu
YnNwOyBJZiB0aGUgcGFyaXR5IG9mIGFsbCAzQyBvcmJpdHMgYXJlIHNvbHZlZCwgdGhlIHBh
cml0eSBvZiB0aGUgMkMgb3JiaXRzIGFyZSBhdXRvbWF0aWNhbGx5IHNvbHZlZC4mbmJzcDs8
L3A+PHA+PGJyPjwvcD48cD5UaGlzIHJlc3VsdCBzdXJwcmlzZWQgbWUgaW4gYSBnb29kIHdh
eS4gSSB0aGluayBJJiMzOTtsbCBmb2N1cyBvbiAzQyBmaXJzdCBhbmQgdHJ5IHNvbHZlIHRo
ZW0gKEkgc3RpbGwgZG9uJiMzOTt0IGhhdmUgYW55IGlkZWEgeWV0LCBldmVuIGFmdGVyIHJl
YWRpbmcgeW91ciBzdHJhdGVneSkuIFRoZW4gZmluZGluZyAyQyB0aHJlZS1jeWNsZXMgd2l0
aG91dCBhZmZlY3RpbmcgM0Mgc2hvdWxkIGJlIGVhc3kuIEkmIzM5O2xsIGtlZXAgd29ya2lu
ZyBvbiBpdC48L3A+PHA+PGJyPjwvcD48cD5Db25ncmF0cyBhZ2FpbiE8L3A+PHA+PGJyPjwv
cD48cD5OYW48L3A+
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
PiAgSWYgdGhlIHBhcml0eSBvZiBhbGwgM0Mgb3JiaXRzIGFyZSBzb2x2ZWQsIHRoZSBwYXJp
dHkgb2YgdGhlIDJDIG9yYml0cyBhcmUgYXV0b21hdGljYWxseSBzb2x2ZWQuIA0KID4NCg0K
ID4gVGhpcyByZXN1bHQgc3VycHJpc2VkIG1lIGluIGEgZ29vZCB3YXkuIEkgdGhpbmsgSSds
bCBmb2N1cyBvbiAzQyBmaXJzdCBhbmQgdHJ5IHNvbHZlIHRoZW0gKEkgc3RpbGwgZG9uJ3Qg
aGF2ZSBhbnkgDQogPiBpZGVhIHlldCwgZXZlbiBhZnRlciByZWFkaW5nIHlvdXIgc3RyYXRl
Z3kpLiBUaGVuIGZpbmRpbmcgMkMgdGhyZWUtY3ljbGVzIHdpdGhvdXQgYWZmZWN0aW5nIDND
IHNob3VsZCBiZSBlYXN5Lg0KID4gSSdsbCBrZWVwIHdvcmtpbmcgb24gaXQuDQogDQoNCiBO
YW4sDQogICBJIGRvbid0IHRoaW5rIGl0J3MgZ29vZCBpZGVhLiBQcm9iYWJseSwgdW5kZXJz
dGFuZGFibGUgcGljdHVyZSBpbiAzQyB3aWxsIG9jY3VyIG9ubHkgaWYgMkMgcGFyaXRpZXMg
d2VyZSBzb2x2ZWQgYmVmb3JlLiBJIHNlZSBubyBjaGFuY2UgdG8gc29sdmUgM0MgZnJvbSB0
aGUgc2NyYXRjaCAtIHlvdSB3aWxsIHNlZSBqdXN0IGEgbWVzcyBvZiB3cm9uZyBwbGFuZXMg
dGhlcmUgd2l0aG91dCBhbnkgaWRlYSBob3cgdG8gZmlnaHQgaXQuDQogICBCeSB0aGUgd2F5
LCB3aGF0IGFyZSByYW5rcyBvZiBtYXRyaWNlcyBmb3IgMkMgYW5kIGZvciAzQyAodGhhdCBp
cyBudW1iZXIgb2YgaW5kZXBlbmRlbnQgcGFyaXRpZXMpPyBJIGRpZG4ndCBjYWxjdWxhdGUg
dGhlbSBhbmQgdmVyeSBjdXJpb3VzIGluIHRoZSByZXN1bHQuDQogDQoNCiAgIEFuZHJleQ0K
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+Jmd0OyZuYnNwOyBJZiB0aGUgcGFyaXR5IG9mIGFsbCAzQyBvcmJpdHMgYXJlIHNvbHZl
ZCwgdGhlIHBhcml0eSBvZiB0aGUgMkMgb3JiaXRzIGFyZSBhdXRvbWF0aWNhbGx5IHNvbHZl
ZC4mbmJzcDs8L3A+PHA+Jmd0Ozxicj48L3A+PHA+Jmd0OyBUaGlzIHJlc3VsdCBzdXJwcmlz
ZWQgbWUgaW4gYSBnb29kIHdheS4gSSB0aGluayBJJiMzOTtsbCBmb2N1cyBvbiAzQyBmaXJz
dCBhbmQgdHJ5IHNvbHZlIHRoZW0gKEkgc3RpbGwgZG9uJiMzOTt0IGhhdmUgYW55IDwvcD48
cD4mZ3Q7IGlkZWEgeWV0LCBldmVuIGFmdGVyIHJlYWRpbmcgeW91ciBzdHJhdGVneSkuIFRo
ZW4gZmluZGluZyAyQyB0aHJlZS1jeWNsZXMgd2l0aG91dCBhZmZlY3RpbmcgM0Mgc2hvdWxk
IGJlIGVhc3kuPC9wPjxwPiZndDsmbmJzcDtJJiMzOTtsbCBrZWVwIHdvcmtpbmcgb24gaXQu
PC9wPjxwPjxicj48L3A+PHA+TmFuLDwvcD48cD4mbmJzcDsgSSBkb24mIzM5O3QgdGhpbmsg
aXQmIzM5O3MgZ29vZCBpZGVhLiBQcm9iYWJseSwgdW5kZXJzdGFuZGFibGUgcGljdHVyZSBp
biAzQyB3aWxsIG9jY3VyIG9ubHkgaWYgMkMgcGFyaXRpZXMgd2VyZSBzb2x2ZWQgYmVmb3Jl
LiBJIHNlZSBubyBjaGFuY2UgdG8gc29sdmUgM0MgZnJvbSB0aGUgc2NyYXRjaCAtIHlvdSB3
aWxsIHNlZSBqdXN0IGEgbWVzcyBvZiB3cm9uZyBwbGFuZXMgdGhlcmUgd2l0aG91dCBhbnkg
aWRlYSBob3cgdG8gZmlnaHQgaXQuPC9wPjxwPiZuYnNwOyBCeSB0aGUgd2F5LCB3aGF0IGFy
ZSByYW5rcyBvZiBtYXRyaWNlcyBmb3IgMkMgYW5kIGZvciAzQyAodGhhdCBpcyBudW1iZXIg
b2YgaW5kZXBlbmRlbnQgcGFyaXRpZXMpPyBJIGRpZG4mIzM5O3QgY2FsY3VsYXRlIHRoZW0g
YW5kIHZlcnkgY3VyaW91cyBpbiB0aGUgcmVzdWx0LjwvcD48cD48YnI+PC9wPjxwPiZuYnNw
OyBBbmRyZXk8L3A+
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
SGkgQW5kcmV5LA0KIA0KDQogVGhhbmtzIGZvciB0aGUgYWR2aWNlLiBXZSdsbCBzZWUgaWYg
SSBjYW4gZW5kdXJlIHRoZSAzQyBzaXR1YXRpb24uLi4NCiANCg0KIEFib3V0IHRoZSBtYXRy
aWNlcywgbGV0IG1lIGNsYXJpZnkgbXkgZGVmaW5pdGlvbnMuIEFzIHlvdSBzYWlkLCB0aGVy
ZSBhcmUgNzIgb3JiaXRzIGZvciAyQyBwaWVjZXMuIEkgZGVmaW5lIE1hdHJpeDJDIHRvIGhh
dmUgNzIgcm93cywgMTIwIGNvbHVtbnMuIFRoZSBjb21wb25lbnQgYXQgdGhlIGktdGggcm93
IGFuZCBqLXRoIGNvbHVtbiBpcyAxIGlmIGZsaXBwaW5nIGNlbGwgaiBjaGFuZ2VzIHRoZSBw
YXJpdHkgb2Ygb3JiaXQgaSwgYW5kIGlzIDAgb3RoZXJ3aXNlLiBTaW5jZSB0aGVyZSBhcmUg
NjAgb3JiaXRzIGZvciAzQywgTWF0cml4M0MgaGFzIDYwIHJvd3MgMTIwIGNvbHVtbnMuIFRo
ZSBkZWZpbml0aW9uIGlzIHNpbWlsYXIuDQogDQoNCiBVbmRlciB0aGlzIGRlZmluaXRpb246
DQogDQoNCiBUaGUgcmFuayBvZiB0aGUgMkMgbWF0cml4IGlzOiAzNg0KIFRoZSByYW5rIG9m
IHRoZSAzQyBtYXRyaXggaXM6IDQ0DQoNCiANCg0KIFlvdSBjYW4gcGxheSB3aXRoIHRoZSBT
YWdlIGNvZGUgaGVyZSBodHRwOi8vYWxlcGguc2FnZW1hdGgub3JnLz96PWVKek5YV3RQMjln
V19WNnBfOEhTbFc3REhZYkdaS2FWUmtKWEV3cWQwdW1USVRQVHFrSUdRa2doajNFTXRQejZj
UWlQeEdjXzFuazVTQllrOWpuN3NmYmV5X3ZZVHZLZjVLUW94cjg4ZlpxZGRjY25hNU9zMXgx
a3hjbmFLTzg5X2ZfVlJuZm42dXBGSjd2c0hMZmZfcjQ1ZkozXzJqdmYzZnIyTHYycjNXcGV2
ZGhOdDdjdTJfMmR0M185OF96NzF6ZmZEenV2X3Z3d0tuYjJYcWNfbmJkM1gxeTJkMF9mcF8z
aTlkWFd4YzdWVC1uN3E3M2gyejhPbTNuemFITnI5MlUyZUgzODlaOVBIdzktLV9SajFobF96
RHFmTmdfT3hpX0hvdzhYZjdZX2JPOTh6QWF2MW51VGk5ODduYzI5UWFmYkg3MzdPUjlfLVBu
cmo5OWZiZlgtX3J2WDc1NjNyM2Ffdld0M1RyZjNucjNjSHA5LWFtLW1lMGVfdG45Nzl2N2pt
NDNfbm1YRDNzYlVxOGVQSGpfcUQ4YWp2RWp5YkhnMEdreDN2TmxkMzB3MmtqZFprZmVfN1k2
encyN2o1WFpqZldVMWViNi1tcVRyelpWeXpQWEIyYmh5ZU9QejUzUTFhZktiZkRUVWxob3ZZ
dGpBeVVramVGcVYtV1UxLWF6YUV0QUVSSlE1SnJXVVVJLWQ4c1RxaXlyUzh6TWN0S2xUUUpu
MXdPbXBpTXdJTmlsWXBIRWw1dXRJTlJDYlFfeUZTQnc0UmZvaDhMU18zM1Z5c0l3dXpYNkIy
UU0wS3BKTS1iVHFhYWRuUHFZMDBxRk1WdTJ5VldSbFQyd3ZFS3Y0M2dNWFhDZXIxTk1EMmdL
cFdrV2RFWVAwREdvRWdpU3U2bmZORy1xVVJVNUg2dnRDNGJTVUJsUEZ4STg5U0tQcVhGREU0
QkJuWDFJd0I1ZlAwMHVoWGtFUjZaMFBaUmxyeEhobEhydTV3MGNpbGU3VzN1Z1RsOVBsdVFs
M3hzQUthVnktM1praFpPOFJGZVo0b3RSbUNXUVNZY0RjR3ZIaFhCa0tHMUpiczBFY1hHZzdl
cGZuanlXZWMxRlh0TDd1MTNmZEE4OERHZHJhMXRpZ1NhZ2xnZThFLUM4UUhieVBuUkc0VXhw
N0JEd2oyMkxqMzA0RVJ4cVViODJCeTF3anhxYlZJT2o2LTVVdTlCN0xkUXVNZ0pzdW43Yks2
dEFEWHJuVXNGbXNsdWZlcXU2NzBHREUxYmh6TWdVNWJfZ1hXLUN6ZThRclREVXpkX0NUSzNn
aVJQVXU0WTZ0YlNySE9CV29GZ1pmWHNVOEkwWWwtNmpBT3hTdFhnQ0JuX2R3Z3lkc294eXF2
ME9rV2ZpLWhPc2VvVEN3M1dtbEF1ODZVSm0xNW5Sekxsd0JleGpQV05rcWNoUlMwOHFsem9y
MmtSblFrZXJJdXRrakJranFNQ1FMUTdHUWx0T3hrektzWk9jenFOeUxPUi1GdHJxZm44YlJx
clB4OE84M2JGYmo1dFQ2dWFJMmJrbU52X0ZBTUpBT2Z0M0RCem0xbGtPWkYzVjV4U0F0S0hT
bTB0am1PelNienYycEx6aHh6NGp4OFBhUmllUnh3TGJVV0xuNHMwZnFUV3hoWXlJZ0dxbllK
TEVMN0JFakJmMnYwNFNDSnl4dldCdFQwMU1JcEtWUldWeGxCdjlySTNaalF1WjBfYXhjWjg5
dE5aSElvLVVfMVJzUUQ3Sk9RcEcwTHczRzRtbFNiVURHcUNFdnc4cjNlOTdEREk3elFxRG0x
V0Z0d3VfM3hGb2pCbWs1WW5Sbk1TUkFNbVBkc2NXdjJkVGNnYmhWSGU2T2lMVFZiTnNpQ3RJ
RTE4WXRRVGJUNW5UVjg1NkxBd053dkI3VjZlQzZYRW8wLXAwQXZBWmtfbnNJREcwcmNHRkEz
WGRzd3dJQW5tRkNSY21aWUEzMmVKaExFdHVvQmpoN09XbFVSdFowZHl0ZTlBU0Q3XzVHY3Nw
T1lGejJxT0YwVC1ZVHVKS3FkYUc1QlBiZzdNWGJlb2VMR19GTy1VNUlXeUhrZGdWSWRTN2do
Ukg4akZoSDdkWDNtWURnVjBKaUJDcElUSURlUXhXQUZIakFwSFNiRlRaQmZjNUNRRDlkMnhw
T1ZvZHJWNFBzM19yNVFoSHlxaW1lMDJudEJiQkVHclJIR2k5TW53UUM1NFp0TGVvbzNUby0t
ZWtjSW5fVl9pWUZpMFBFZmpwR0tvTmFncUFZQklkN0lRX2lHNjlNT1dETVExMG1DRjV5eEJi
M013SGs4aUZVWS0wdnA3YlY4QzNTa2M0V09DRzRZUm43cWtXb0twMURPb2c4dFhFTG5rQ0N1
cHBEQjIyMWZsZXY2UlBPOUZFdmt1QTJ1R3VNc2thVUdkSHEwa0c4Z0lkdHRPeVJEcEk2LU5v
NFJuY1J0a3NORm9vb1YwM2RFbEVPY3J3dVAzWkw3WUYwMDU0TkVJRVZVTG5XWmZucmFqZWd2
bnhabWYwUVRJdjVJWmhuMC1GelB3UXpHMWNPbl8wUWpKb1FjaHVnZHR1NGZJVDM4SjdFbk1p
ZHhkUEZvNlljWkMzR3JkMnVRelJyeElNZ2JjWHJ6czBkQ2FjTUVtZ1ZPRmROTHRwQ2l3c21h
bHpCY3dfSURHVGZvanB0UW03RjZMTFhNaE9TUlhJX19uNXh5UlVhemdQa2RQS3RsUWVjV0lU
cEJRbFdHYUg2b2dlenVveVhuVU9zNEx3a1FRS3JpTFJOVG5RUVF1RW9sd2lDNVZLT3NBXzB5
VjdLR0F0dWtTUW5fd1VOVUVGRkFGT0RvUElucXpGd1RqdDRZTVdhZ3V0azJPZTNpam91V1FV
alNYZTRRcTFPdDNoSWxlTklLNmhNbW5Rb2RvNTgxRnFXazRKVFZBa1htUGNVMHB4LTB3LWZf
Q045UWlJbUl5SFFmeEFMVGJ6bHFMSXlGM0k2RlIzQ3pTVF8yc3JoOWxnUk9TbmNtZE9RblZ3
MnpmWFRNdmVvZ2l1QkFrc3NwZDZDa0hObWtGNXdoSU52Q0NhU3dSWVhBV1VtY3paVEdDekVF
elNZTTlzMGlhUjhCMUJaS2d1WjA3Ym91dTIzaWkwZUZuT0t3SFhwM05ia0J5X3NZZGVJcENF
T1JHczdCWXlrT1V5TkR6SUdpU0duVnlpU2REVmVQNjJheGtGbERqQ3pCd3d5ZnBUVWFDVkV3
TnRnRDlOdk5RbFU1OGdFUmN6RVkwZ21FRXVXX0N3ejVwd29BVmZKVHEtYk5US2xnU25pRUFx
U2ZaMnJYb2lZZ0RHSmc2VGl2cDhHNjQ0cmZ6a210dWlxOVl2UEVtSkNwcS1hNkxKdzl2VUNU
M05LRUpEd2xMTGxDaUhiU0NUSWpOU3JXNVFtVDB6RktUZUg2Tlc0WFBnTzFVcGlqQkFxTjE0
TkVTNWM5UWlYVDBiZzVtMjFuX2F0RVRnYXp1VEhJZWVUdTZub2k2eUNNN1c2aGJ5N2hkZ2xE
ME15bTl1cFFrVU80UGlZdzE0b1N4azBIbWtvVG5Cd1pPZGthUlVxQTZrQUNRVlNlTndZNjNL
SzIwLXJVOGdjRXZCT3FibUlGc1JDTlhvY0lGRHVPUGJUNlNKSW9EY3FlRTFMbVlMZlNQYVRp
a2dlUXpKYmNITzZCYjZXSjlDWUF3ZkxoOHhRcTVSSmdxcXFrOTJYQmQ3dldlZzlrRXdDN2NW
ZE53ZVR4TVdSQnBlQ1hBcHdGb0w1cWg3U2tIYUlGZ2VWTGZDMkxuS3NoZENGS2xrd1NmWkxK
enFMQjYtRlBCTmVJMEV6MFpwUFRablFrQ0FMSmxtVk1aN0t4QmI0ZVFfY1JvSDFrVTBPcklx
NldSdUM1VUotQ2ZLcmI2T3N4dkhzci1nU0RIRExKOWsxemxTVjVzMzllamtGWHJuSXJDbXpu
WXlRREppMTMtSklNclp5QlpLZ0xZQVFxX2NRRWhTVUlPdHl3MUpPSHgtQXVlbjNJNk5jbnlZ
VEdyU1hsSU53cXJvSld0eXdsN21sQ29MWEdySHltbFJpSmRQMHp6bkNISkFrTWN0SUMzREtM
aXdNQ194Y0hrbmJWcWpMdFctLWRrZzc0U2hZaWx3cVNlcENJcTN5bkdDLVdoaWVHT0FCdDhw
NGxmanZ6UTU1ZDR0TWFOeGswd1laWGNGUk5ScmtIb1Fma0ZpUmFCZzV6WldfVzBJSWg5VE1R
OHFNRExndE5wVTRjMkVYQnNnUnU5a1Q4dTRXbDJScWxWa0JVNEdIMDlpa0JxVEdkRzRXYUJW
WjFmUVc1YnFIWUNaSEMxWTFBekpHYWtDT3lDUWpJLUREWlhuMWJjaVZDNW5XT0Fsd2FBbFFJ
YWJLV0lLYjREVTVqQUNCdlJPZ3hnbE1MSFdXa0l1Z1ZiYXdxZHBOVURsbjVYcFlPT3IxZ2ZQ
VTJBUWJ6U2tnU0VqVkM1RnBMdW9WSk9NTUJqTDN3c2ItbEFOcGw2cEVwUTY4M2wyOGdaUGVM
SE01YTBFekpQZXJuM1BCalFVM2hFOU12ZVpjZ2MyYUZGcHltaUNVSlI5RnlKNUIyamJiT0dO
VlBJUWdxR1VqaEU2QUZyZEVMa2cxcEZLc0FwOFJLMTZxcUhCWks0LVV2VVFDeFhHOGFROXVv
YkpGZkFKU3pXQUg0QVdZdWRpU2NDS0ZBZVlYeWJURTNDaFBRSElaWXg0QzFZRVZLbXRIazJf
Uk50VkNkV0phUlZvRzI1U0JhSk9EalNRTm1PNGM1Wk92eVpHMmlNcHhKdmFIdkktSUp3Rlo3
RzZoRV9EajNxckZKcHNCd2xJZEZ1WHppR1l5eVZrbFdFbzY1MXpYQW13STByanhCSjdWbkhi
VEQ2bWk0czNCRHhJT3R3Y3BUb1FEbmFFbHpJdjFPWmNLVkJXbmNTQVJkVllXV25FamFhUThI
ZU5wRWlkWm9Ya1VOd0hIVlFnbWNnYkFOVG9YbTRCZVNyQUhhSy1Kc2V3OWFhQ2NWYVJEVmlT
bU1vWk1jYXBrMG42VHVPNlBobngtV3FBSTJTSTVJUkFnMVZTenFoOFdMZDR2WFdtVTFiZ1FL
eE5zeEE4UXBFckJjQW1pWnJPRFlha0dfTzI5Y2JXUTVkd1NsSU1wcnU0bi1SZ1BOV21BNEJR
aVg0M1ZndVczWDRnNnV1Z21HMG1uZTFpTThvVXZSSjE5R2VwdWtSWGQ5VTE2eVBQMTJ4RXRa
c1N6NXJXV1VkN3Y5WWZaMmY2Z1ZEZVpmckZxLWJfeE9jLUdSNlBCMnZSZmYxZzBwc2F0Sk1l
alBEbEktc09rM04zck5xWm16RXlkSE9iWjRPQ3NlN1FfbWFvc3BkeW9idHg5WS12X2trVk41
YnpKNk95ODZJLUdkOV82MnRwY0tfZGRkUGZMa1NkRm95SzFuSkdkM2N6ZUwwNnlZbjgydUhW
WUNyaVQ5VU5GejdWNTAtbjc2NGY3bHlmZFlUbC1OdkhvVHVfNjFEeEc5dU5INDd4RUlIbFNl
cFFYX1dFdk9jNUhneVJMWmdnbHQwYXVKbFBoU2VscGxuZVRtWUxWcERncFgxOURNanBPU2pX
al9LQmZKUDNKTDBuanFwdVBra0UzRzA2UzdrVTVjOXpOQi1mbDBOS0psU2UzV2huTHAwN2Rt
SFUzOU1rZnBhNVN4ZURhcGFtT3UwTzNYczVObXc0dVBUaWQybFZVSnlaUFNoZ25SZDY0blRq
Tmc5UEd5Z3FyTng5ZEpwTnBkakh5cXBhc2xSUDJyeWMwZUtFdHdabVc1RXhMY0tibDRFeExj
cVpWY2VaZkg2TUh3Zz09JmFtcDtsYW5nPXNhZ2UuIFlvdSBzaG91bGQgYmUgYWJsZSB0byBl
ZGl0IHRoZSBzY3JpcHQgYW5kIHJlLXJ1biBpdC4gVGhlIG1hdHJpY2VzIGFyZSBoYXJkY29k
ZWQgaW4gaXQuIA0KIA0KDQogSXQncyB0aGUgZmlyc3QgdGltZSBJIHVzZSBTYWdlIGFuZCBJ
IGRvbid0IGtub3cgaG93IHRvIGRvIHNvbWUgc3R1ZmYuIEluIHRoZSBzY3JpcHQgSSByYW5k
b21seSBnZW5lcmF0ZSBzb21lIHNjcmFtYmxlIG1vdmUsIGZpbmQgdGhlIHNvbHV0aW9uIHRv
IHNvbHZlIHRoZSAzQyBvcmJpdHMgYnkgc29sdmluZyBhIGxpbmVhciBzeXN0ZW0sIGFuZCBh
cHBseSBhbGwgdGhlIG1vdmVzIHRvIDJDIG9yYml0cyB0byBzZWUgaWYgdGhleSBhcmUgc29s
dmVkLiBTbyBmYXIgaXQncyB0cnVlLiBJdCdzIGVub3VnaCBmb3IgcHJhY3RpY2FsIHB1cnBv
c2UsIGJ1dCBpdCdzIG5vdCBhIHJpZ29yb3VzIHByb29mLiBJdCdsbCBiZSBnb29kIGlmIFNh
Z2UgY2FuIGxldCBtZSBkaXJlY3RseSB2ZXJpZnkgdGhhdCB0aGUga2VybmVsIG9mIG9uZSBt
YXRyaXggaXMgYSBzdWJzcGFjZSBvZiB0aGUga2VybmVsIG9mIGFub3RoZXIuDQogDQoNCiBO
YW4NCg==
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+SGkgQW5kcmV5LDwvcD48cD48YnI+PC9wPjxwIHN0eWxlPSJjb2xvcjpyZ2IoMCwgMCwg
MCk7Zm9udC1zaXplOjEzcHg7Zm9udC1mYW1pbHk6YXJpYWwsIGhlbHZldGljYSwgY2xlYW4s
IHNhbnMtc2VyaWY7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXN0eWxlOm5v
cm1hbDsiPlRoYW5rcyBmb3IgdGhlIGFkdmljZS4gV2UmIzM5O2xsIHNlZSBpZiBJIGNhbiBl
bmR1cmUgdGhlIDNDIHNpdHVhdGlvbi4uLjwvcD48cCBzdHlsZT0iY29sb3I6cmdiKDAsIDAs
IDApO2ZvbnQtc2l6ZToxM3B4O2ZvbnQtZmFtaWx5OmFyaWFsLCBoZWx2ZXRpY2EsIGNsZWFu
LCBzYW5zLXNlcmlmO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC1zdHlsZTpu
b3JtYWw7Ij48YnI+PC9wPjxwIHN0eWxlPSJjb2xvcjpyZ2IoMCwgMCwgMCk7Zm9udC1zaXpl
OjEzcHg7Zm9udC1mYW1pbHk6YXJpYWwsIGhlbHZldGljYSwgY2xlYW4sIHNhbnMtc2VyaWY7
YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXN0eWxlOm5vcm1hbDsiPkFib3V0
IHRoZSBtYXRyaWNlcywgbGV0IG1lIGNsYXJpZnkgbXkgZGVmaW5pdGlvbnMuIEFzIHlvdSBz
YWlkLCB0aGVyZSBhcmUgNzIgb3JiaXRzIGZvciAyQyBwaWVjZXMuIEkgZGVmaW5lIE1hdHJp
eDJDIHRvIGhhdmUgNzIgcm93cywgMTIwIGNvbHVtbnMuIFRoZSBjb21wb25lbnQgYXQgdGhl
IGktdGggcm93IGFuZCBqLXRoIGNvbHVtbiBpcyAxIGlmIGZsaXBwaW5nIGNlbGwgaiBjaGFu
Z2VzIHRoZSBwYXJpdHkgb2Ygb3JiaXQgaSwgYW5kIGlzIDAgb3RoZXJ3aXNlLiBTaW5jZSB0
aGVyZSBhcmUgNjAgb3JiaXRzIGZvciAzQywgTWF0cml4M0MgaGFzIDYwIHJvd3MgMTIwIGNv
bHVtbnMuIFRoZSBkZWZpbml0aW9uIGlzIHNpbWlsYXIuPC9wPjxwIHN0eWxlPSJjb2xvcjpy
Z2IoMCwgMCwgMCk7Zm9udC1zaXplOjEzcHg7Zm9udC1mYW1pbHk6YXJpYWwsIGhlbHZldGlj
YSwgY2xlYW4sIHNhbnMtc2VyaWY7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250
LXN0eWxlOm5vcm1hbDsiPjxicj48L3A+PHAgc3R5bGU9ImNvbG9yOnJnYigwLCAwLCAwKTtm
b250LXNpemU6MTNweDtmb250LWZhbWlseTphcmlhbCwgaGVsdmV0aWNhLCBjbGVhbiwgc2Fu
cy1zZXJpZjtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtc3R5bGU6bm9ybWFs
OyI+VW5kZXIgdGhpcyBkZWZpbml0aW9uOjwvcD48cCBzdHlsZT0iY29sb3I6cmdiKDAsIDAs
IDApO2ZvbnQtc2l6ZToxM3B4O2ZvbnQtZmFtaWx5OmFyaWFsLCBoZWx2ZXRpY2EsIGNsZWFu
LCBzYW5zLXNlcmlmO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC1zdHlsZTpu
b3JtYWw7Ij48YnI+PC9wPjxwIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50
OyI+VGhlIHJhbmsgb2YgdGhlIDJDIG1hdHJpeCBpczogMzY8L3A+PHAgc3R5bGU9ImJhY2tn
cm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Ij48c3BhbiBzdHlsZT0iYmFja2dyb3VuZC1jb2xv
cjp0cmFuc3BhcmVudDtsaW5lLWhlaWdodDoxLjIyOyI+VGhlIHJhbmsgb2YgdGhlIDNDIG1h
dHJpeCBpczogNDQ8L3NwYW4+PGJyPjwvcD48cCBzdHlsZT0iYmFja2dyb3VuZC1jb2xvcjp0
cmFuc3BhcmVudDtjb2xvcjpyZ2IoMCwgMCwgMCk7Zm9udC1zaXplOjEzcHg7Zm9udC1mYW1p
bHk6YXJpYWwsIGhlbHZldGljYSwgY2xlYW4sIHNhbnMtc2VyaWY7Zm9udC1zdHlsZTpub3Jt
YWw7Ij48c3BhbiBzdHlsZT0iYmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtsaW5lLWhl
aWdodDoxLjIyOyI+PGJyPjwvc3Bhbj48L3A+PHAgc3R5bGU9ImJhY2tncm91bmQtY29sb3I6
dHJhbnNwYXJlbnQ7Y29sb3I6cmdiKDAsIDAsIDApO2ZvbnQtc2l6ZToxM3B4O2ZvbnQtc3R5
bGU6bm9ybWFsO2ZvbnQtZmFtaWx5OmFyaWFsLCBoZWx2ZXRpY2EsIGNsZWFuLCBzYW5zLXNl
cmlmOyI+PHNwYW4gc3R5bGU9ImJhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7bGluZS1o
ZWlnaHQ6MS4yMjsiPllvdSBjYW4gcGxheSB3aXRoIHRoZSBTYWdlIGNvZGUgPGEgcmVsPSJu
b2ZvbGxvdyIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9Imh0dHA6Ly9hbGVwaC5zYWdlbWF0aC5v
cmcvP3o9ZUp6TlhXdFAyOWdXX1Y2cF84SFNsVzdESFliR1pLYVZSa0pYRXdxZDB1bVRJVFBU
cWtJR1FrZ2hqM0VNdFB6NmNRaVB4R2NfMW5rNVNCWWs5am43c2ZiZXlfdllUdktmNUtRb3hy
ODhmWnFkZGNjbmE1T3MxeDFreGNuYUtPODlfZl9WUm5mbjZ1cEZKN3ZzSExmZl9yNDVmSjNf
Mmp2ZjNmcjJMdjJyM1dwZXZkaE50N2N1Ml8yZHQzXzk4X3o3MXpmZkR6dXZfdnd3S25iMlhx
Y19uYmQzWDF5MmQwX2ZwXzNpOWRYV3hjN1ZULW43cTczaDJ6OE9tM256YUhOcjkyVTJlSDM4
OVo5UEh3OS0tX1JqMWhsX3pEcWZOZ19PeGlfSG93OFhmN1lfYk85OHpBYXYxbnVUaTk4N25j
MjlRYWZiSDczN09SOV8tUG5yajk5ZmJmWC1fcnZYNzU2M3IzYV92V3QzVHJmM25yM2NIcDkt
YW0tbWUwZV90bjk3OXY3am00M19ubVhEM3NiVXE4ZVBIal9xRDhhanZFanliSGcwR2t4M3ZO
bGQzMHcya2pkWmtmZV83WTZ6dzI3ajVYWmpmV1UxZWI2LW1xVHJ6WlZ5elBYQjJiaHllT1B6
NTNRMWFmS2JmRFRVbGhvdll0akF5VWtqZUZxVi1XVTEtYXphRXRBRVJKUTVKcldVVUktZDhz
VHFpeXJTOHpNY3RLbFRRSm4xd09tcGlNd0lOaWxZcEhFbDV1dElOUkNiUV95RlNCdzRSZm9o
OExTXzMzVnlzSXd1elg2QjJRTTBLcEpNLWJUcWFhZG5QcVkwMHFGTVZ1MnlWV1JsVDJ3dkVL
djQzZ01YWENlcjFOTUQyZ0twV2tXZEVZUDBER29FZ2lTdTZuZk5HLXFVUlU1SDZ2dEM0YlNV
QmxQRnhJODlTS1BxWEZERTRCQm5YMUl3QjVmUDAwdWhYa0VSNlowUFpSbHJ4SGhsSHJ1NXcw
Y2lsZTdXM3VnVGw5UGx1UWwzeHNBS2FWeS0zWmtoWk84UkZlWjRvdFJtQ1dRU1ljRGNHdkho
WEJrS0cxSmJzMEVjWEdnN2VwZm5qeVdlYzFGWHRMN3UxM2ZkQTg4REdkcmExdGlnU2FnbGdl
OEUtQzhRSGJ5UG5SRzRVeHA3QkR3ajIyTGozMDRFUnhxVWI4MkJ5MXdqeHFiVklPajYtNVV1
OUI3TGRRdU1nSnN1bjdiSzZ0QURYcm5Vc0Ztc2x1ZmVxdTY3MEdERTFiaHpNZ1U1Yl9nWFct
Q3plOFFyVERVemRfQ1RLM2dpUlBVdTRZNnRiU3JIT0JXb0ZnWmZYc1U4STBZbC02akFPeFN0
WGdDQm5fZHdneWRzb3h5cXYwT2tXZmktaE9zZW9UQ3czV21sQXU4NlVKbTE1blJ6TGx3QmV4
alBXTmtxY2hSUzA4cWx6b3Iya1JuUWtlckl1dGtqQmtqcU1DUUxRN0dRbHRPeGt6S3NaT2N6
cU55TE9SLUZ0cnFmbjhiUnFyUHg4TzgzYkZiajV0VDZ1YUkyYmttTnZfRkFNSkFPZnQzREJ6
bTFsa09aRjNWNXhTQXRLSFNtMHRqbU96U2J6djJwTHpoeHo0ang4UGFSaWVSeHdMYlVXTG40
czBmcVRXeGhZeUlnR3FuWUpMRUw3QkVqQmYydjA0U0NKeXh2V0J0VDAxTUlwS1ZSV1Z4bEJ2
OXJJM1pqUXVaMF9heGNaODl0TlpISW8tVV8xUnNRRDdKT1FwRzBMdzNHNG1sU2JVREdxQ0V2
dzhyM2U5N0RESTd6UXFEbTFXRnR3dV8zeEZvakJtazVZblJuTVNSQU1tUGRzY1d2MmRUY2di
aFZIZTZPaUxUVmJOc2lDdElFMThZdFFUYlQ1blRWODU2TEF3Tnd2QjdWNmVDNlhFbzAtcDBB
dkFaa19uc0lERzByY0dGQTNYZHN3d0lBbm1GQ1JjbVpZQTMyZUpoTEV0dW9Camg3T1dsVVJ0
WjBkeXRlOUFTRDdfNUdjc3BPWUZ6MnFPRjBULVlUdUpLcWRhRzVCUGJnN01YYmVvZUxHX0ZP
LVU1SVd5SGtkZ1ZJZFM3Z2hSSDhqRmhIN2RYM21ZRGdWMEppQkNwSVRJRGVReFdBRkhqQXBI
U2JGVFpCZmM1Q1FEOWQyeHBPVm9kclY0UHMzX3I1UWhIeXFpbWUwMm50QmJCRUdyUkhHaTlN
bndRQzU0WnRMZW9vM1RvLS1la2NJbl9WX2lZRmkwUEVmanBHS29OYWdxQVlCSWQ3SVFfaUc2
OU1PV0RNUTEwbUNGNXl4QmIzTXdIazhpRlVZLTB2cDdiVjhDM1NrYzRXT0NHNFlSbjdxa1dv
S3AxRE9vZzh0WEVMbmtDQ3VwcERCMjIxZmxldjZSUE85RkV2a3VBMnVHdU1za2FVR2RIcTBr
RzhnSWR0dE95UkRwSTYtTm80Um5jUnRrc05Gb29vVjAzZEVsRU9jcnd1UDNaTDdZRjAwNTRO
RUlFVlVMbldaZm5yYWplZ3ZueFptZjBRVEl2NUlaaG4wLUZ6UHdRekcxY09uXzBRakpvUWNo
dWdkdHU0ZklUMzhKN0VuTWlkeGRQRm82WWNaQzNHcmQydVF6UnJ4SU1nYmNYcnpzMGRDYWNN
RW1nVk9GZE5MdHBDaXdzbWFsekJjd19JREdUZm9qcHRRbTdGNkxMWE1oT1NSWElfX241eHlS
VWF6Z1BrZFBLdGxRZWNXSVRwQlFsV0dhSDZvZ2V6dW95WG5VT3M0THdrUVFLcmlMUk5UblFR
UXVFb2x3aUM1VktPc0FfMHlWN0tHQXR1a1NRbl93VU5VRUZGQUZPRG9QSW5xekZ3VGp0NFlN
V2FndXRrMk9lM2lqb3VXUVVqU1hlNFFxMU90M2hJbGVOSUs2aE1tblFvZG81ODFGcVdrNEpU
VkFrWG1QY1UwcHgtMHctZl9DTjlRaUltSXlIUWZ4QUxUYnpscUxJeUYzSTZGUjNDelNUXzJz
cmg5bGdST1NuY21kT1FuVncyemZYVE12ZW9naXVCQWtzc3BkNkNrSE5ta0Y1d2hJTnZDQ2FT
d1JZWEFXVW1jelpUR0N6RUV6U1lNOXMwaWFSOEIxQlpLZ3VaMDdib3V1MjNpaTBlRm5PS3dI
WHAzTmJrQnlfc1lkZUlwQ0VPUkdzN0JZeWtPVXlORHpJR2lTR25WeWlTZERWZVA2MmF4a0Zs
RGpDekJ3d3lmcFRVYUNWRXdOdGdEOU52TlFsVTU4Z0VSY3pFWTBnbUVFdVdfQ3d6NXB3b0FW
ZkpUcS1iTlRLbGdTbmlFQXFTZloyclhvaVlnREdKZzZUaXZwOEc2NDRyZnprbXR1aXE5WXZQ
RW1KQ3BxLWE2TEp3OXZVQ1QzTktFSkR3bExMbENpSGJTQ1RJak5Tclc1UW1UMHpGS1RlSDZO
VzRYUGdPMVVwaWpCQXFOMTRORVM1YzlRaVhUMGJnNW0yMW5fYXRFVGdhenVUSEllZVR1Nm5v
aTZ5Q003VzZoYnk3aGRnbEQwTXltOXVwUWtVTzRQaVl3MTRvU3hrMEhta29UbkJ3Wk9ka2FS
VXFBNmtBQ1FWU2VOd1k2M0tLMjAtclU4Z2NFdkJPcWJtSUZzUkNOWG9jSUZEdU9QYlQ2U0pJ
b0RjcWVFMUxtWUxmU1BhVGlrZ2VRekpiY0hPNkJiNldKOUNZQXdmTGg4eFFxNVJKZ3FxcWs5
MlhCZDd2V2VnOWtFd0M3Y1ZkTndlVHhNV1JCcGVDWEFwd0ZvTDVxaDdTa0hhSUZnZVZMZkMy
TG5Lc2hkQ0ZLbGt3U2ZaTEp6cUxCNi1GUEJOZUkwRXowWnBQVFpuUWtDQUxKbG1WTVo3S3hC
YjRlUV9jUm9IMWtVME9ySXE2V1J1QzVVSi1DZktyYjZPc3h2SHNyLWdTREhETEo5azF6bFNW
NXMzOWVqa0ZYcm5JckNtem5ZeVFESmkxMy1KSU1yWnlCWktnTFlBUXFfY1FFaFNVSU90eXcx
Sk9IeC1BdWVuM0k2TmNueVlUR3JTWGxJTndxcm9KV3R5d2w3bWxDb0xYR3JIeW1sUmlKZFAw
enpuQ0hKQWtNY3RJQzNES0xpd01DX3hjSGtuYlZxakx0Vy0tZGtnNzRTaFlpbHdxU2VwQ0lx
M3luR0MtV2hpZUdPQUJ0OHA0bGZqdnpRNTVkNHRNYU54azB3WVpYY0ZSTlJya0hvUWZrRmlS
YUJnNXpaV19XMElJaDlUTVE4cU1ETGd0TnBVNGMyRVhCc2dSdTlrVDh1NFdsMlJxbFZrQlU0
R0gwOWlrQnFUR2RHNFdhQlZaMWZRVzVicUhZQ1pIQzFZMUF6Skdha0NPeUNRakktRERaWG4x
YmNpVkM1bldPQWx3YUFsUUlhYktXSUtiNERVNWpBQ0J2Uk9neGdsTUxIV1drSXVnVmJhd3Fk
cE5VRGxuNVhwWU9PcjFnZlBVMkFRYnpTa2dTRWpWQzVGcEx1b1ZKT01NQmpMM3dzYi1sQU5w
bDZwRXBRNjgzbDI4Z1pQZUxITTVhMEV6SlBlcm4zUEJqUVUzaEU5TXZlWmNnYzJhRkZweW1p
Q1VKUjlGeUo1QjJqYmJPR05WUElRZ3FHVWpoRTZBRnJkRUxrZzFwRktzQXA4UksxNnFxSEJa
SzQtVXZVUUN4WEc4YVE5dW9iSkZmQUpTeldBSDRBV1l1ZGlTY0NLRkFlWVh5YlRFM0NoUFFI
SVpZeDRDMVlFVkttdEhrMl9STnRWQ2RXSmFSVm9HMjVTQmFKT0RqU1FObU80YzVaT3Z5Wkcy
aU1weEp2YUh2SS1JSndGWjdHNmhFX0RqM3FyRkpwc0J3bElkRnVYemlHWXl5VmtsV0VvNjUx
elhBbXdJMHJqeEJKN1ZuSGJURDZtaTRzM0JEeElPdHdjcFRvUURuYUVsekl2MU9aY0tWQldu
Y1NBUmRWWVdXbkVqYWFROEhlTnBFaWRab1hrVU53SEhWUWdtY2diQU5Ub1htNEJlU3JBSGFL
LUpzZXc5YWFDY1ZhUkRWaVNtTW9aTWNhcGswbjZUdU82UGhueC1XcUFJMlNJNUlSQWcxVlN6
cWg4V0xkNHZYV21VMWJnUUt4TnN4QThRcEVyQmNBbWlack9EWWFrR19PMjljYldRNWR3U2xJ
TXBydTRuLVJnUE5XbUE0QlFpWDQzVmd1VzNYNGc2dXVnbUcwbW5lMWlNOG9VdlJKMTlHZXB1
a1JYZDlVMTZ5UFAxMnhFdFpzU3o1cldXVWQ3djlZZloyZjZnVkRlWmZyRnEtYl94T2MtR1I2
UEIydlJmZjFnMHBzYXRKTWVqUERsSS1zT2szTjNyTnFabXpFeWRIT2JaNE9Dc2U3UV9tYW9z
cGR5b2J0eDlZLXZfa2tWTjVieko2T3k4NkktR2Q5XzYydHBjS19kZGRQZkxrU2RGb3lLMW5K
R2QzY3plTDA2eVluODJ1SFZZQ3JpVDlVTkZ6N1Y1MC1uNzY0ZjdseWZkWVRsLU52SG9UdV82
MUR4Rzl1Tkg0N3hFSUhsU2VwUVhfV0V2T2M1SGd5UkxaZ2dsdDBhdUpsUGhTZWxwbG5lVG1Z
TFZwRGdwWDE5RE1qcE9TaldqX0tCZkpQM0pMMG5qcXB1UGtrRTNHMDZTN2tVNWM5ek5CLWZs
ME5LSmxTZTNXaG5McDA3ZG1IVTM5TWtmcGE1U3hlRGFwYW1PdTBPM1hzNU5tdzR1UFRpZDJs
VlVKeVpQU2hnblJkNjRuVGpOZzlQR3lncXJOeDlkSnBOcGRqSHlxcGFzbFJQMnJ5YzBlS0V0
d1ptVzVFeExjS2JsNEV4TGNxWlZjZVpmSDZNSHdnPT0mYW1wO2FtcDtsYW5nPXNhZ2UiPmhl
cmU8L2E+LiZuYnNwOzwvc3Bhbj48c3BhbiBzdHlsZT0iYmFja2dyb3VuZC1jb2xvcjp0cmFu
c3BhcmVudDtsaW5lLWhlaWdodDoxLjIyOyI+WW91IHNob3VsZCBiZSBhYmxlIHRvIGVkaXQg
dGhlIHNjcmlwdCBhbmQgcmUtcnVuIGl0LiBUaGUgbWF0cmljZXMgYXJlIGhhcmRjb2RlZCBp
biBpdC4mbmJzcDs8L3NwYW4+PC9wPjxwIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnRyYW5z
cGFyZW50O2NvbG9yOnJnYigwLCAwLCAwKTtmb250LXNpemU6MTNweDtmb250LXN0eWxlOm5v
cm1hbDsiIGNsYXNzPSJ5dWlfM18xNF8wXzNfMTM5MTEyMjQ0MTQ3M185NSI+PHNwYW4gc3R5
bGU9ImJhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7bGluZS1oZWlnaHQ6MS4yMjsiPjxi
cj48L3NwYW4+PC9wPjxwIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2Nv
bG9yOnJnYigwLCAwLCAwKTtmb250LXNpemU6MTNweDtmb250LXN0eWxlOm5vcm1hbDtmb250
LWZhbWlseTphcmlhbCwgaGVsdmV0aWNhLCBjbGVhbiwgc2Fucy1zZXJpZjsiIGNsYXNzPSJ5
dWlfM18xNF8wXzNfMTM5MTEyMjQ0MTQ3M185NSI+PHNwYW4gc3R5bGU9ImJhY2tncm91bmQt
Y29sb3I6dHJhbnNwYXJlbnQ7bGluZS1oZWlnaHQ6MS4yMjsiPkl0JiMzOTtzIHRoZSBmaXJz
dCB0aW1lIEkgdXNlIFNhZ2UgYW5kIEkgZG9uJiMzOTt0IGtub3cgaG93IHRvIGRvIHNvbWUg
c3R1ZmYuIEluIHRoZSBzY3JpcHQgSSByYW5kb21seSBnZW5lcmF0ZSBzb21lIHNjcmFtYmxl
IG1vdmUsIGZpbmQgdGhlIHNvbHV0aW9uIHRvIHNvbHZlIHRoZSAzQyBvcmJpdHMgYnkgc29s
dmluZyBhIGxpbmVhciBzeXN0ZW0sIGFuZCBhcHBseSBhbGwgdGhlIG1vdmVzIHRvIDJDIG9y
Yml0cyB0byBzZWUgaWYgdGhleSBhcmUgc29sdmVkLiBTbyBmYXIgaXQmIzM5O3MgdHJ1ZS4g
SXQmIzM5O3MgZW5vdWdoIGZvciBwcmFjdGljYWwgcHVycG9zZSwgYnV0IGl0JiMzOTtzIG5v
dCBhIHJpZ29yb3VzIHByb29mLiBJdCYjMzk7bGwgYmUgZ29vZCBpZiBTYWdlIGNhbiBsZXQg
bWUgZGlyZWN0bHkgdmVyaWZ5IHRoYXQgdGhlIGtlcm5lbCBvZiBvbmUgbWF0cml4IGlzIGEg
c3Vic3BhY2Ugb2YgdGhlIGtlcm5lbCBvZiBhbm90aGVyLjwvc3Bhbj48L3A+PHAgc3R5bGU9
ImJhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Y29sb3I6cmdiKDAsIDAsIDApO2ZvbnQt
c2l6ZToxM3B4O2ZvbnQtc3R5bGU6bm9ybWFsO2ZvbnQtZmFtaWx5OmFyaWFsLCBoZWx2ZXRp
Y2EsIGNsZWFuLCBzYW5zLXNlcmlmOyIgY2xhc3M9Inl1aV8zXzE0XzBfM18xMzkxMTIyNDQx
NDczXzk1Ij48c3BhbiBzdHlsZT0iYmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtsaW5l
LWhlaWdodDoxLjIyOyI+PGJyPjwvc3Bhbj48L3A+PHAgc3R5bGU9ImJhY2tncm91bmQtY29s
b3I6dHJhbnNwYXJlbnQ7Y29sb3I6cmdiKDAsIDAsIDApO2ZvbnQtc2l6ZToxM3B4O2ZvbnQt
c3R5bGU6bm9ybWFsO2ZvbnQtZmFtaWx5OmFyaWFsLCBoZWx2ZXRpY2EsIGNsZWFuLCBzYW5z
LXNlcmlmOyIgY2xhc3M9Inl1aV8zXzE0XzBfM18xMzkxMTIyNDQxNDczXzk1Ij48c3BhbiBz
dHlsZT0iYmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtsaW5lLWhlaWdodDoxLjIyOyI+
TmFuPC9zcGFuPjwvcD4=
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
TmFuLA0KICAgSXQncyB2ZXJ5IGVhc3kgdG8gY2hlY2sgdGhhdCBrZXJuZWwgb2YgM0Mgc3lz
dGVtIGxheXMgaW4gdGhlIGtlcm5lbCBvZiAyQzogdGFrZSBjb21iaW5lZCBtYXRyaXggKHdp
dGggMTIwIGNvbHVtbnMgYW5kIDEzMj02MCs3MiByb3dzKSBhbmQgY29tcHV0ZSBpdHMgcmFu
ay4gSWYgeW91IGdldCA0NCwgdGhlbiB5b3VyIHRoZW9yeSBpcyByaWdodC4NCiAgIFNvIHdl
IGhhdmUgb25seSA4IGRlZ3JlZXMgb2YgZnJlZWRvbSBiZXR3ZWVuIDJDIGFuZCAzQz8gSW50
ZXJlc3RpbmcuIEkndmUgZXhwZWN0ZWQgbXVjaCBtb3JlLi4uIEknbGwgdGhpbmsgYWJvdXQg
aXQuDQogDQoNCiBBbmRyZXkuDQogDQoNCg==
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+TmFuLDwvcD48cD4mbmJzcDsgSXQmIzM5O3MgdmVyeSBlYXN5IHRvIGNoZWNrIHRoYXQg
a2VybmVsIG9mIDNDIHN5c3RlbSBsYXlzIGluIHRoZSBrZXJuZWwgb2YgMkM6IHRha2UgY29t
YmluZWQgbWF0cml4ICh3aXRoIDEyMCBjb2x1bW5zIGFuZCAxMzI9NjArNzIgcm93cykgYW5k
IGNvbXB1dGUgaXRzIHJhbmsuIElmIHlvdSBnZXQgNDQsIHRoZW4geW91ciZuYnNwO3RoZW9y
eSBpcyByaWdodC48L3A+PHA+Jm5ic3A7IFNvIHdlIGhhdmUgb25seSA4IGRlZ3JlZXMgb2Yg
ZnJlZWRvbSBiZXR3ZWVuIDJDIGFuZCAzQz8gSW50ZXJlc3RpbmcuIEkmIzM5O3ZlIGV4cGVj
dGVkIG11Y2ggbW9yZS4uLiBJJiMzOTtsbCB0aGluayBhYm91dCBpdC48L3A+PHA+PGJyPjwv
cD48cD5BbmRyZXkuPC9wPjxwPjxicj48L3A+
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
I'm wondering whether there might be another fun puzzle type here, or at
least a useful tool for solving this one. Imagine a 2-color version, or
even 1-color in which inverted stickers are highlighted. This would be
very much like a "Lights Out" puzzle because the goal would be to turn
off all the highlighted stickers.
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
TWVsaW5kYSwNCiANCg0KIFRoZSBnZW9tZXRyaWMgbGlnaHRzIG91dCBwdXp6bGUgaXMgd2hh
dCBJIHN1Z2dlc3RlZCBlYXJsaWVyIGluIHRoaXMgdGhyZWFkLi4uIExhdGVyIEkgdHJpZWQg
cGxheWluZyB0aGUgQ3ViZSBhbmQgdGhlIGljb3NhaGVkcm9uIHZlcnNpb24gb2YgIkxpZ2h0
cyBvdXQiIG9uIGEgcGllY2Ugb2YgcGFwZXIuICJDbGlja2luZyIgYSB2ZXJ0ZXggZmxpcCB0
aGUgc3RhdGUgb2YgYWRqYWNlbnQgZWRnZXMuIFRoZXkgd2VyZSBwcmV0dHkgdHJpdmlhbCB0
byBzb2x2ZS4gTWF5YmUgaWYgd2UgaW5jcmVhc2UgdGhlIG51bWJlciBvZiBlZGdlcyB0aGF0
IGVhY2ggImNsaWNrIiBhZmZlY3RzLCB0aGUgcHV6emxlIGJlY29tZXMgaGFyZGVyLg0KIA0K
DQogVGhlIHJlYWwgZGVhbCBoZXJlIGluIDEyMC1jZWxsIGlzIHByZXR0eSBoYXJkIHRvIGls
bHVzdHJhdGUuLi4gU29tZSBjb25maWd1cmF0aW9ucyBodHRwOi8vZW4ud2lraXBlZGlhLm9y
Zy93aWtpL0NvbmZpZ3VyYXRpb25fKGdlb21ldHJ5KSBtYXkgbWFrZSBncmVhdCBMaWdodHMg
b3V0IHB1enpsZXMuDQo=
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+TWVsaW5kYSw8L3A+PHA+PGJyPjwvcD48cCBzdHlsZT0iY29sb3I6cmdiKDAsIDAsIDAp
O2ZvbnQtc2l6ZToxM3B4O2ZvbnQtZmFtaWx5OmFyaWFsLCBoZWx2ZXRpY2EsIGNsZWFuLCBz
YW5zLXNlcmlmO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC1zdHlsZTpub3Jt
YWw7Ij5UaGUgZ2VvbWV0cmljIGxpZ2h0cyBvdXQgcHV6emxlIGlzIHdoYXQgSSBzdWdnZXN0
ZWQgZWFybGllciBpbiB0aGlzIHRocmVhZC4uLiBMYXRlciBJIHRyaWVkIHBsYXlpbmcgdGhl
IEN1YmUgYW5kIHRoZSBpY29zYWhlZHJvbiB2ZXJzaW9uIG9mICZxdW90O0xpZ2h0cyBvdXQm
cXVvdDsgb24gYSBwaWVjZSBvZiBwYXBlci4gJnF1b3Q7Q2xpY2tpbmcmcXVvdDsgYSB2ZXJ0
ZXggZmxpcCB0aGUgc3RhdGUgb2YgYWRqYWNlbnQgZWRnZXMuJm5ic3A7PHNwYW4gc3R5bGU9
ImJhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7bGluZS1oZWlnaHQ6MS4yMjsiPlRoZXkg
d2VyZSBwcmV0dHkgdHJpdmlhbCB0byBzb2x2ZS4gTWF5YmUgaWYgd2UgaW5jcmVhc2UgdGhl
IG51bWJlciBvZiBlZGdlcyB0aGF0IGVhY2ggJnF1b3Q7Y2xpY2smcXVvdDsgYWZmZWN0cywg
dGhlIHB1enpsZSBiZWNvbWVzIGhhcmRlci48L3NwYW4+PC9wPjxwIHN0eWxlPSJjb2xvcjpy
Z2IoMCwgMCwgMCk7Zm9udC1zaXplOjEzcHg7Zm9udC1mYW1pbHk6YXJpYWwsIGhlbHZldGlj
YSwgY2xlYW4sIHNhbnMtc2VyaWY7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250
LXN0eWxlOm5vcm1hbDsiPjxzcGFuIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFy
ZW50O2xpbmUtaGVpZ2h0OjEuMjI7Ij48YnI+PC9zcGFuPjwvcD48cCBzdHlsZT0iY29sb3I6
cmdiKDAsIDAsIDApO2ZvbnQtc2l6ZToxM3B4O2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJl
bnQ7Zm9udC1zdHlsZTpub3JtYWw7Zm9udC1mYW1pbHk6YXJpYWwsIGhlbHZldGljYSwgY2xl
YW4sIHNhbnMtc2VyaWY7Ij48c3BhbiBzdHlsZT0iYmFja2dyb3VuZC1jb2xvcjp0cmFuc3Bh
cmVudDtsaW5lLWhlaWdodDoxLjIyOyI+VGhlIHJlYWwgZGVhbCBoZXJlIGluIDEyMC1jZWxs
IGlzIHByZXR0eSBoYXJkIHRvIGlsbHVzdHJhdGUuLi4gU29tZSA8YSByZWw9Im5vZm9sbG93
IiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0iaHR0cDovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9D
b25maWd1cmF0aW9uXyhnZW9tZXRyeSkiPmNvbmZpZ3VyYXRpb25zPC9hPiZuYnNwO21heSBt
YWtlIGdyZWF0IExpZ2h0cyBvdXQgcHV6emxlcy48L3NwYW4+PC9wPg==
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
TXkgbGFzdCByZXBseSBkaWRuJ3Qgc2VlbSB0byBnbyBvdXQuIExldCBtZSByZXBseSB0byBB
bmRyZXkgYWdhaW4uDQogDQoNCiBUaGFua3MgZm9yIHRoZSB0ZXJyaWZpYyBzdWdnZXN0aW9u
ISBTYWdlIGNvbmZpcm1zIHRoYXQgdGhlIGNvbWJpbmVkIG1hdHJpeCBoYXMgcmFuayA0NC4N
Cg==
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+TXkgbGFzdCByZXBseSBkaWRuJiMzOTt0IHNlZW0gdG8gZ28gb3V0LiBMZXQgbWUgcmVw
bHkgdG8gQW5kcmV5IGFnYWluLjwvcD48cD48YnI+PC9wPjxwIHN0eWxlPSJjb2xvcjpyZ2Io
MCwgMCwgMCk7Zm9udC1zaXplOjEzcHg7Zm9udC1mYW1pbHk6YXJpYWwsIGhlbHZldGljYSwg
Y2xlYW4sIHNhbnMtc2VyaWY7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXN0
eWxlOm5vcm1hbDsiPlRoYW5rcyBmb3IgdGhlIHRlcnJpZmljIHN1Z2dlc3Rpb24hIFNhZ2Ug
Y29uZmlybXMgdGhhdCB0aGUgY29tYmluZWQgbWF0cml4IGhhcyByYW5rIDQ0LjwvcD4=
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--------------090201030708070103030704
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
I don't recall that message but I know that Lights Out has been
mentioned before. My suggested model is based on all pieces (cubies) of
an entire cell rather than on individual pieces. Call it "cell based" if
you like. That seems to me to be the more natural version of Lights Out
for 'Z' puzzles. I would expect it to be much harder than a piece-based
puzzle, but also much easier than the normal Z puzzles.
On 1/30/2014 3:52 PM, mananself@gmail.com wrote:
>
> The geometric lights out puzzle is what I suggested earlier in this
> thread... Later I tried playing the Cube and the icosahedron version
> of "Lights out" on a piece of paper. "Clicking" a vertex flip the
> state of adjacent edges. They were pretty trivial to solve. Maybe if
> we increase the number of edges that each "click" affects, the puzzle
> becomes harder.
>
> The real deal here in 120-cell is pretty hard to illustrate... Some
> configurations
>
> great Lights out puzzles.
>
--------------090201030708070103030704
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
">
I don't recall that message but I know that Lights Out has been
mentioned before. My suggested model is based on all pieces (cubies)
of an entire cell rather than on individual pieces. Call it "cell
based" if you like. That seems to me to be the more natural version
of Lights Out for 'Z' puzzles. I would expect it to be much harder
than a piece-based puzzle, but also much easier than the normal Z
puzzles.
helvetica, clean,
sans-serif;background-color:transparent;font-style:normal;">The
geometric lights out puzzle is what I suggested earlier in this
thread... Later I tried playing the Cube and the icosahedron
version of "Lights out" on a piece of paper. "Clicking" a vertex
flip the state of adjacent edges.=C2=A0 style=3D"background-color:transparent;line-height:1.22;">They
were pretty trivial to solve. Maybe if we increase the number
of edges that each "click" affects, the puzzle becomes harder.pan>
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
QW5kcmV5LA0KIA0KDQogVGhpcyBpcyBhIHRlcnJpZmljIHN1Z2dlc3Rpb24uIFNhZ2UgY29u
ZmlybXMgdGhhdCB0aGUgcmFuayBvZiB0aGUgY29tYmluZWQgbWF0cml4IGlzIDQ0IGluZGVl
ZC4gDQogDQoNCiBTZWUgdGhlIHVwZGF0ZWQgU2FnZSBzY3JpcHQgaGVyZSBodHRwOi8vYWxl
cGguc2FnZW1hdGgub3JnLz96PWVKek5YVTJQR2trU3ZWdnlmNmliNlhITG9rQ2FrVmJhazZY
ZDA1eThtb3RsdFhBYjIyZ01XRFJqci1iWFR4VTBEVlVaOGVKbFptVFNVcWtOVlpueDhTTGla
V1FWNE5YNi0zYTNiM2FMemFmdC11V0xseTkyaTUtX0xfYTcxZjluYjV0X04tX2Z0N2ZOVkRf
d1ZhLWpEVjZVc0VHVDB4YndkQ3p6dzIzejNyVEYwUVJHVkRpbWpaUlF4MDQ4Y2Z4aWpQVGxq
QVJ0NWhSU1poMDRNeFdKR2FFbWhZbzByeVI4WGFnR1NuTkl2aERFZ1QzU3o0R244XzJ1eWNF
WVhabjluTm1ETktxUVRMeXNadHFabVktdGpMU1h5YVpkc1lxaTdDbnRCV09WM252d2dtdXlT
cDBlTUJaSTB5cHBSWFRwR2N3SXVDU3U2WGZsZzNVcUlxY0w5WDFlT0YybHdUUXh5V01QMGFp
YUc0b1NISkxzUzB2bTRQVjUtaXJVQ3hTSjN1VlFWckJITEZmbXBaczdmaVJUNldudGpUM3hP
bDFlbXZCa0RLS1E1dVhIclF5ZXZVZFJtTXVKTXBzbGtrbkFnSXM5NHZPNU0tUWIwbGl6U1J4
U2FMdDRsNWVQSlo5elJYZTB1ZTdYdS1fQjV3R0d0dG9lbXpTSnRjVDVTVUQtQmpIQi05SVp3
VHRsc1lmamloeUxUWDQ3NFk0MEtULWFBNi01Unl4TnF5N281dnZWRG5xUDY3cEZSaUJOVjA1
YkZYWHBHZTljS2h3UnUtV0x0NmI3S1RSWWNEZWVuRXd1NjBaLXNUbXY3Z1h2TUZWbWJ2ZkZs
VndJV2IxWGVHSWJtOG9sbGdMVFF2ZnRWY2tWc1NqWkZ3VS1vV2p0QW5ELXZFY2FQTDZOc2xk
X3gwaUw4UDBLOXoyOE1JZzlHYVdDN3pwWW1WVnplbm9STHNjZUpqTldzWW9TaFZUYXVkU3M2
Qnlaam82TVI5Wm1qeElnbWNPWUxQUmlJU3VuU3llbHItVGtGUlQzWXNsWHFhUDI1NmQ1dEdv
Mkh2bjlSc3h1UEp4YW55dXFjVXNiX0MwSFFvQzAtMzJQSE9UTVd2WXlyLWoyU2tFYUtFeW0w
dExtSnpTYnlmMXBMamhsVjhSeWVPZklaUExZc1MwTmRpNzU3TkZtRTV0dlRBQ2loWW9OaVIy
d1I0a1V6TDlQNHdXUEwyOUVHMVBwVXdpaXBVVlozR1NHX0hzamNXTThjN28tSzlmc3VhTW1D
bmwwX1VfMU91SWgxb2tYU2VmU1lDbWVGdFU2TWthRnZQU1ZuX2Q1anpBNHlSdUJ5cnZEYXNM
UFowcnRFVjFhamhMZFdRa0psTXhTVDJ6NWV6YVZPNUMwcXVQZGdVaEh6WTR0SXBjbXVCcTN1
QnloemUxdDVqT1hCQWJRZUwybzAtNjZVa3EwLUpNQXZnWXdfejBIaG80Vk9CaFEtNG10THdE
a0N1TVZwV1NDRGRqamVXNUpZcVBxc0hvbGFUUkdWbnE2VlM1NndPQ252NFdjaWhOWWxqMHFM
UGRpUHBFN3Fhb2J6U3V3aDJZdjM5WW4zTndvdC1RbklSMkZVTm9kSU5NNXh4c2pfSXBZb19i
cWZTZkFfVTVJaVVDNXhJVG9QVXdCVElFN0ptWGFMTjhFelZtRmlINjYyaDRPcS1PMW0wSE9i
XzF5b2ZDOGE4cm5kRnU5QUs1SWdfRkk4NFdaazBEa1hOX1dva2JwMXZqbVozS0k4bFhubS1R
V2g0TDlkSWxVSnJXNG9PaUN3MW5Jc19qRnExQU9HWE92MndUdUpTY2NaYjhUSUc0ZnZCcnJm
RG5WZHNNbnBBdXRGandocEdGWi1xNkZWNVZlSU8waXoyemMzQk1JcUtzY091cW8tbHU5b1U4
ODB4ZTlTY0xia0s2eHlCNFJNMkxVcllOeUFmZHR0T0tSZGtrZGZtOWNvcnZ3N1ZMZFFsSGty
bWxhSXVJZ2wtdnlTN2ZVR1VoUDQ5bUFFVGdDVld0ZHJyLXZUZ1BxdzRmQl9fQXlmX29mWHN4
STRfWGRiS041LVF5aDhjMUdPRkZibnR2aDFWQU9zOG5TTm1VSDdJOGR0Z3ZTVVlTZDNMV0pj
R0tRU0t2SXVXWnl5UlpHM0FreDQwb3VLbVRKaXcySjZYUUllUlJWWTY4eHhZbEZjaDVfM2pW
cWhjYnpnRGhkZkJ2bGdTYVdvWEFnSVNvalRGX3NZSTczNTlnNXhnck5TeEVrc29wRTIzQ2lr
eENDcTFvaUFNdFJqcWlmMU1OZVlveUJXeUxKNGIta0FTYW9ER0JtRUV6LVZEVTY1M1NDQjFH
c0NWd1h3MzU1ak5ScHlRcU1GTjNSQ25VOFBlTFRweHBIUmtFVjBtUkNzV3ZrWTlZeVRncE4w
U2hjWk41TFNHdjZRejl5OGtfMGlZa1lSZ0xRdjR1RklkNDRxcXJNUVU2MzBDSGVUUEZ2ckJ6
dFRCU1JpOEtUT1kwNXFXWFRSVC1OdWNjVVBBb1VXV0t0OUphRVhETkQ5RUlqSFA1Z01FRUdS
OXpkdzB5V2JDWVlET0pKR3F5Wkhab2tVbjRDcUNxVmVlWjBMTHBwNTZOaXk0Y2xuQUs0cnIw
NHB2cmd3UmwxanlnYWtrQzBzVlBJU0liRHpQZ3dZNWdZYW5wQmtiUzM1ZnBwMHpRTnFuQkFt
RDFra1Btcm9zWW9JUUR2Z0QxQ3Y4MGtNSjBURTVReGs0LWhtRUFxV2VxendwaHJvZ0N1eU02
c3B6Q1kwc2dVU1FpRnlMN0pWUThpQmpBV2NVQXF6djAwV1hkYS1lT1l4S0pyMWk4X0M4UkVU
Rjh6MGJGdzlmV0FwelVsREVoOFNzVnlCY2cyRVFreEktM3FodEx3eEJaT2Vid2s3OFp4NFNk
VXE0Z3hRNmphZURORXZIRFRJMTYtR0lISHQtTi1PcmRHNkdna2s1LUdYRTd1dHRBWHJFSXpk
WHg0UHQxaTdNTERtTXpXVHBwUWlRTTBQdGF3QjJXSlFkT1JwdUpFQndjN2g2V05xSXlrQWlZ
VVRPRnBZNkxMcVd3X2JVNFJjd2pnM1VwekdTMk1oV2IwTkVDbzNFbnNwOXNoU0tRM0pualRT
Sm5BYnliN1JVVWlqekdaRGR6c0QtZDdlWURHRWpnWVh3cERiVkttQ0txcERydVBCWjdQREhv
UEpwTkllM25YdzhFaWNXbWtvYVdnbGdLYWhXUy1tcGNzcEJPaXBVRVZDM3lzaXhwck1YUmhT
Z1ltWWI5c29vdjRSRFhJTV9DYUNWcUkxbVZxWWtKamdneE1paXBqUHBXRndfbnpIcnlOZ1BX
WkF3ZldSRDJzRFdBNXlDOGdmX3kyeUc2Y3pfNlJMbUJBV2o1aDF6UlRUWm9Qejl2bDVMeHp3
YXlKMlE0amhBR0w5aHVPRkdPTEsxQUViUUJDcWQ0REpDZ3BBZXRLd3hLblR3N0EydlR6eUNM
M3A4V0VKdTBWNVRDY2FoNUFTeHIybUZ2R0lHVHRFVWV2UlNWUk1rUF9raU9zQVNrU00wWWF3
SWxkR0F4el9seWVTTnRScU9QYUQxOG5wQjI0U3BhaWxrcEluU2ZTSnM4Qjg4M0N5TVNBRDNo
VXhwdkVmemJiOC1tV21OQzh5YUVOR0YzZ3FCa044UXpERDB5c1JEU0NuTmJLUHkwaHdDVXo4
NWd5RXdNZWk4MG96bHJZd1FBY3NjY3puay0zdENRenF5d0ttQkU4bXNhcE5LQU5wbXV6U0t2
RXFwYVBJdmM5Z0prYUxVVFZETWtZYlFBNUkxT01ETUJIeV9MeFc4LWRpNWpXUEFsb2FBR29H
Rk14bHVRQnZCYUhDU0NvVHdMTU9KR0paYzRDdVVoYUZRdWJxVDBFVlhNVzE4UGdhdFkzeWR2
Z0FEYUdVMGlRbUtvSGtaa085UUxKUElPUnpEMDQxUC1qUWJUTFZHSlNCMV92S2Q3UVNSLVdP
YzVhMGd6a192aDdMcnl4NU1Id1NhZzNuQXZZYkNxaGhkT0VvU3g4bFNGN0JlblliTk9NTmZF
QVFURExCb1FPUU10YmdndlNEQ21LbGZPS09QTFNSRVhMV2p3U2U4a0VTdVA0MEI3ZVF1TW8t
QWxJTTRNVGdBY3dhN0VWNFdRS2c4d3ZrV21GdVVVLUFhbGxUSGlKVkVkV0tOYk9KdF9RTnRO
Q2MySTdSaHFESGNwZ3RPRmdNMGxEcHJ0Ry1lSnJjV1Fzb2pqT3dublA1NGg4RW9qRm5oWTZn
Sl8yMWl3MmJBWUp5M2hZa2U4amhzbUVzd3BZS2pxWFhOY0FOZ1pwM25nQnozRk9wLW1uVkVu
eDF1QW5DVWM3d3hRbnc0SEowQXJtbGZxZXl3aXFrZE04a0l5NktBdWp1RkUwRWtfbmVGckVD
U3NNcl9JbThMaUNZRElyQUs4eHVkZ0FlcTNBSHFTOUljYlllOUZBbkZXaVExRWtaaklHcGpo
VHNtaF9TRnpucTU2Zm53WVVnUzNDQ2NFQWFhWmFWUDJvYU9sLTJVcUw3TVpCckVLd0dUOUlr
RVlGb3lXSW1jMEpoclVXOEtkbjQyWWg0OXdDeXNrVU44LUxmTXlIV2pRQU9NWElOMk0xc1B6
NFM2ZV92NXYxUDNGNl9MWFRkOThYOTh2SmZfOHptZDNjTnJfTnVxR3o2VTAzNW5EeE9LNGJQ
bm42ZGRUWjI1dWpqTGtpNDlmcFVNWnhYRGQ4Y3ZFTHF6Y25PelFwN1R3d1pYNHlaajR3cDNu
ZEJJSzNQNWJkMkQtVzlfdnRiaWoySVBIZGZyRmZIbndUaHZ3Mk80MllLeU4tblI2MGJIZXJM
NnZONHR2ZHVsUDMwTnZXX1R0NXYxdHNQbTNYYl9wX1ZwdjlwRWZqcHZtODNUVWZtOVdtTTNY
elpUbnB6Zmh3RVBKd3YxdXNQMzViZnJwNzZGVjJVaDVWVDU3US02VVphdXJtUFd5X19iVmZi
VGRQMk0zZnZ1bk9fVmplZFNPXzdpY2pxZDJNeGJmSDJYZjdyNHY5M1hId19MNFQ4Q1RyOVVq
UHdieC0tdDNzX3U3bjEtV21HMy1jLU9sSjc2dzNUNUg5OHNYM1hZZEE4NnJ6YUxkZmJiNDBu
M2ZiZGJOb2pnZzFKeU52bTE1NDAzbTYyQzJibzRMYlp2LTFlMzJBWlB1NTZkUnNkeDlYLTJi
MThLOW04dmR5dDIzV3k4WG1vVm4tNkdaLVgtN1dmM1ZET3lkdVhwMjBLcGIzVGoyYTlUVDAx
Zjg2WFoySzljR2xYc2ZUcFpPWEY5UDZ3WjBIZl9aMjdjY1RtMWNkakFfNzNlUTBzYy1EUHlj
M042cmUzZlpuODlCbmx5SnZiTW1iYnNMZFljSkVGem9IenN5Uk0zUGd6RHpCbVRseVpzNDVj
eWh4NUZIUENEaEFyNkZqX2Z5emFfOEFCTllKcWc9PSZhbXA7bGFuZz1zYWdlDQogDQoNCiBJ
IGp1c3Qgbm90aWNlZCB0aGF0IHRoZSBzYWdlIGNlbGwgc2VydmVyIHByb2JhYmx5IFVSTCBl
bmNvZGVkIHRoZSB3aG9sZSBzY3JpcHQgYW5kIHB1dCBpdCBpbiB0aGUgc2hhcmVkIFVSTC4g
U28gZXZlcnkgdGltZSBJIGNoYW5nZSB0aGUgc2NyaXB0LCB0aGUgc2hhcmFibGUgVVJMIGNo
YW5nZXMuDQogDQoNCiBOYW4NCg0KLS0tSW4gNERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwg
PGFuZHJleWFzdHJlbGluQC4uLj4gd3JvdGU6DQoNCiBOYW4sDQogICBJdCdzIHZlcnkgZWFz
eSB0byBjaGVjayB0aGF0IGtlcm5lbCBvZiAzQyBzeXN0ZW0gbGF5cyBpbiB0aGUga2VybmVs
IG9mIDJDOiB0YWtlIGNvbWJpbmVkIG1hdHJpeCAod2l0aCAxMjAgY29sdW1ucyBhbmQgMTMy
PTYwKzcyIHJvd3MpIGFuZCBjb21wdXRlIGl0cyByYW5rLiBJZiB5b3UgZ2V0IDQ0LCB0aGVu
IHlvdXIgdGhlb3J5IGlzIHJpZ2h0Lg0KICAgU28gd2UgaGF2ZSBvbmx5IDggZGVncmVlcyBv
ZiBmcmVlZG9tIGJldHdlZW4gMkMgYW5kIDNDPyBJbnRlcmVzdGluZy4gSSd2ZSBleHBlY3Rl
ZCBtdWNoIG1vcmUuLi4gSSdsbCB0aGluayBhYm91dCBpdC4NCiANCg0KIEFuZHJleS4NCiAN
Cg0KDQoNCg==
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+QW5kcmV5LDwvcD48cD48YnI+PC9wPjxwIHN0eWxlPSJjb2xvcjpyZ2IoMCwgMCwgMCk7
Zm9udC1zaXplOjEzcHg7Zm9udC1mYW1pbHk6YXJpYWwsIGhlbHZldGljYSwgY2xlYW4sIHNh
bnMtc2VyaWY7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXN0eWxlOm5vcm1h
bDsiPlRoaXMgaXMgYSB0ZXJyaWZpYyBzdWdnZXN0aW9uLiBTYWdlIGNvbmZpcm1zIHRoYXQg
dGhlIHJhbmsgb2YgdGhlIGNvbWJpbmVkIG1hdHJpeCBpcyA0NCBpbmRlZWQuJm5ic3A7PC9w
PjxwIHN0eWxlPSJjb2xvcjpyZ2IoMCwgMCwgMCk7Zm9udC1zaXplOjEzcHg7Zm9udC1mYW1p
bHk6YXJpYWwsIGhlbHZldGljYSwgY2xlYW4sIHNhbnMtc2VyaWY7YmFja2dyb3VuZC1jb2xv
cjp0cmFuc3BhcmVudDtmb250LXN0eWxlOm5vcm1hbDsiPjxicj48L3A+PHAgc3R5bGU9ImNv
bG9yOnJnYigwLCAwLCAwKTtmb250LXNpemU6MTNweDtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5z
cGFyZW50O2ZvbnQtc3R5bGU6bm9ybWFsO2ZvbnQtZmFtaWx5OmFyaWFsLCBoZWx2ZXRpY2Es
IGNsZWFuLCBzYW5zLXNlcmlmOyI+U2VlIHRoZSB1cGRhdGVkIFNhZ2Ugc2NyaXB0IDxhIHJl
bD0ibm9mb2xsb3ciIHRhcmdldD0iX2JsYW5rIiBocmVmPSJodHRwOi8vYWxlcGguc2FnZW1h
dGgub3JnLz96PWVKek5YVTJQR2trU3ZWdnlmNmliNlhITG9rQ2FrVmJhazZYZDA1eThtb3Rs
dFhBYjIyZ01XRFJqci1iWFR4VTBEVlVaOGVKbFptVFNVcWtOVlpueDhTTGlaV1FWNE5YNi0z
YTNiM2FMemFmdC11V0xseTkyaTUtX0xfYTcxZjluYjV0X04tX2Z0N2ZOVkRfd1ZhLWpEVjZV
c0VHVDB4YndkQ3p6dzIzejNyVEYwUVJHVkRpbWpaUlF4MDQ4Y2Z4aWpQVGxqQVJ0NWhSU1po
MDRNeFdKR2FFbWhZbzByeVI4WGFnR1NuTkl2aERFZ1QzU3o0R244XzJ1eWNFWVhabjluTm1E
TktxUVRMeXNadHFabVktdGpMU1h5YVpkc1lxaTdDbnRCV09WM252d2dtdXlTcDBlTUJaSTB5
cHBSWFRwR2N3SXVDU3U2WGZsZzNVcUlxY0w5WDFlT0YybHdUUXh5V01QMGFpYUc0b1NISkxz
UzB2bTRQVjUtaXJVQ3hTSjN1VlFWckJITEZmbXBaczdmaVJUNldudGpUM3hPbDFlbXZCa0RL
S1E1dVhIclF5ZXZVZFJtTXVKTXBzbGtrbkFnSXM5NHZPNU0tUWIwbGl6U1J4U2FMdDRsNWVQ
Slo5elJYZTB1ZTdYdS1fQjV3R0d0dG9lbXpTSnRjVDVTVUQtQmpIQi05SVp3VHRsc1lmamlo
eUxUWDQ3NFk0MEtULWFBNi01Unl4TnF5N281dnZWRG5xUDY3cEZSaUJOVjA1YkZYWHBHZTlj
S2h3UnUtV0x0NmI3S1RSWWNEZWVuRXd1NjBaLXNUbXY3Z1h2TUZWbWJ2ZkZsVndJV2IxWGVH
SWJtOG9sbGdMVFF2ZnRWY2tWc1NqWkZ3VS1vV2p0QW5ELXZFY2FQTDZOc2xkX3gwaUw4UDBL
OXoyOE1JZzlHYVdDN3pwWW1WVnplbm9STHNjZUpqTldzWW9TaFZUYXVkU3M2Qnlaam82TVI5
Wm1qeElnbWNPWUxQUmlJU3VuU3llbHItVGtGUlQzWXNsWHFhUDI1NmQ1dEdvMkh2bjlSc3h1
UEp4YW55dXFjVXNiX0MwSFFvQzAtMzJQSE9UTVd2WXlyLWoyU2tFYUtFeW0wdExtSnpTYnlm
MXBMamhsVjhSeWVPZklaUExZc1MwTmRpNzU3TkZtRTV0dlRBQ2loWW9OaVIyd1I0a1V6TDlQ
NHdXUEwyOUVHMVBwVXdpaXBVVlozR1NHX0hzamNXTThjN28tSzlmc3VhTW1DbmwwX1VfMU91
SWgxb2tYU2VmU1lDbWVGdFU2TWthRnZQU1ZuX2Q1anpBNHlSdUJ5cnZEYXNMUFowcnRFVjFh
amhMZFdRa0psTXhTVDJ6NWV6YVZPNUMwcXVQZGdVaEh6WTR0SXBjbXVCcTN1QnloemUxdDVq
T1hCQWJRZUwybzAtNjZVa3EwLUpNQXZnWXdfejBIaG80Vk9CaFEtNG10THdEa0N1TVZwV1ND
RGRqamVXNUpZcVBxc0hvbGFUUkdWbnE2VlM1NndPQ252NFdjaWhOWWxqMHFMUGRpUHBFN3Fh
b2J6U3V3aDJZdjM5WW4zTndvdC1RbklSMkZVTm9kSU5NNXh4c2pfSXBZb19icWZTZkFfVTVJ
aVVDNXhJVG9QVXdCVElFN0ptWGFMTjhFelZtRmlINjYyaDRPcS1PMW0wSE9iXzF5b2ZDOGE4
cm5kRnU5QUs1SWdfRkk4NFdaazBEa1hOX1dva2JwMXZqbVozS0k4bFhubS1RV2g0TDlkSWxV
SnJXNG9PaUN3MW5Jc19qRnExQU9HWE92MndUdUpTY2NaYjhUSUc0ZnZCcnJmRG5WZHNNbnBB
dXRGandocEdGWi1xNkZWNVZlSU8waXoyemMzQk1JcUtzY091cW8tbHU5b1U4ODB4ZTlTY0xi
a0s2eHlCNFJNMkxVcllOeUFmZHR0T0tSZGtrZGZtOWNvcnZ3N1ZMZFFsSGtybWxhSXVJZ2wt
dnlTN2ZVR1VoUDQ5bUFFVGdDVld0ZHJyLXZUZ1BxdzRmQl9fQXlmX29mWHN4STRfWGRiS041
LVF5aDhjMUdPRkZibnR2aDFWQU9zOG5TTm1VSDdJOGR0Z3ZTVVlTZDNMV0pjR0tRU0t2SXVX
Wnl5UlpHM0FreDQwb3VLbVRKaXcySjZYUUllUlJWWTY4eHhZbEZjaDVfM2pWcWhjYnpnRGhk
ZkJ2bGdTYVdvWEFnSVNvalRGX3NZSTczNTlnNXhnck5TeEVrc29wRTIzQ2lreENDcTFvaUFN
dFJqcWlmMU1OZVlveUJXeUxKNGIta0FTYW9ER0JtRUV6LVZEVTY1M1NDQjFHc0NWd1h3MzU1
ak5ScHlRcU1GTjNSQ25VOFBlTFRweHBIUmtFVjBtUkNzV3ZrWTlZeVRncE4wU2hjWk41TFNH
djZRejl5OGtfMGlZa1lSZ0xRdjR1RklkNDRxcXJNUVU2MzBDSGVUUEZ2ckJ6dFRCU1JpOEtU
T1kwNXFXWFRSVC1OdWNjVVBBb1VXV0t0OUphRVhETkQ5RUlqSFA1Z01FRUdSOXpkdzB5V2JD
WVlET0pKR3F5Wkhab2tVbjRDcUNxVmVlWjBMTHBwNTZOaXk0Y2xuQUs0cnIwNHB2cmd3Umwx
anlnYWtrQzBzVlBJU0liRHpQZ3dZNWdZYW5wQmtiUzM1ZnBwMHpRTnFuQkFtRDFra1Btcm9z
WW9JUUR2Z0QxQ3Y4MGtNSjBURTVReGs0LWhtRUFxV2VxendwaHJvZ0N1eU02c3B6Q1kwc2dV
U1FpRnlMN0pWUThpQmpBV2NVQXF6djAwV1hkYS1lT1l4S0pyMWk4X0M4UkVURjh6MGJGdzlm
V0FwelVsREVoOFNzVnlCY2cyRVFreEktM3FodEx3eEJaT2Vid2s3OFp4NFNkVXE0Z3hRNmph
ZURORXZIRFRJMTYtR0lISHQtTi1PcmRHNkdna2s1LUdYRTd1dHRBWHJFSXpkWHg0UHQxaTdN
TERtTXpXVHBwUWlRTTBQdGF3QjJXSlFkT1JwdUpFQndjN2g2V05xSXlrQWlZVVRPRnBZNkxM
cVd3X2JVNFJjd2pnM1VwekdTMk1oV2IwTkVDbzNFbnNwOXNoU0tRM0pualRTSm5BYnliN1JV
VWlqekdaRGR6c0QtZDdlWURHRWpnWVh3cERiVkttQ0txcERydVBCWjdQREhvUEpwTkllM25Y
dzhFaWNXbWtvYVdnbGdLYWhXUy1tcGNzcEJPaXBVRVZDM3lzaXhwck1YUmhTZ1ltWWI5c29v
djRSRFhJTV9DYUNWcUkxbVZxWWtKamdneE1paXBqUHBXRndfbnpIcnlOZ1BXWkF3ZldSRDJz
RFdBNXlDOGdmX3kyeUc2Y3pfNlJMbUJBV2o1aDF6UlRUWm9Qejl2bDVMeHp3YXlKMlE0amhB
R0w5aHVPRkdPTEsxQUViUUJDcWQ0REpDZ3BBZXRLd3hLblR3N0EydlR6eUNMM3A4V0VKdTBW
NVRDY2FoNUFTeHIybUZ2R0lHVHRFVWV2UlNWUk1rUF9raU9zQVNrU00wWWF3SWxkR0F4el9s
eWVTTnRScU9QYUQxOG5wQjI0U3BhaWxrcEluU2ZTSnM4Qjg4M0N5TVNBRDNoVXhwdkVmemJi
OC1tV21OQzh5YUVOR0YzZ3FCa044UXpERDB5c1JEU0NuTmJLUHkwaHdDVXo4NWd5RXdNZWk4
MG96bHJZd1FBY3NjY3puay0zdENRenF5d0ttQkU4bXNhcE5LQU5wbXV6U0t2RXFwYVBJdmM5
Z0prYUxVVFZETWtZYlFBNUkxT01ETUJIeV9MeFc4LWRpNWpXUEFsb2FBR29HRk14bHVRQnZC
YUhDU0NvVHdMTU9KR0paYzRDdVVoYUZRdWJxVDBFVlhNVzE4UGdhdFkzeWR2Z0FEYUdVMGlR
bUtvSGtaa085UUxKUElPUnpEMDQxUC1qUWJUTFZHSlNCMV92S2Q3UVNSLVdPYzVhMGd6a192
aDdMcnl4NU1Id1NhZzNuQXZZYkNxaGhkT0VvU3g4bFNGN0JlblliTk9NTmZFQVFURExCb1FP
UU10YmdndlNEQ21LbGZPS09QTFNSRVhMV2p3U2U4a0VTdVA0MEI3ZVF1TW8tQWxJTTRNVGdB
Y3dhN0VWNFdRS2c4d3ZrV21GdVVVLUFhbGxUSGlKVkVkV0tOYk9KdF9RTnROQ2MySTdSaHFE
SGNwZ3RPRmdNMGxEcHJ0Ry1lSnJjV1Fzb2pqT3dublA1NGg4RW9qRm5oWTZnSl8yMWl3MmJB
WUp5M2hZa2U4amhzbUVzd3BZS2pxWFhOY0FOZ1pwM25nQnozRk9wLW1uVkVueDF1QW5DVWM3
d3hRbnc0SEowQXJtbGZxZXl3aXFrZE04a0l5NktBdWp1RkUwRWtfbmVGckVDU3NNcl9JbThM
aUNZRElyQUs4eHVkZ0FlcTNBSHFTOUljYlllOUZBbkZXaVExRWtaaklHcGpoVHNtaF9TRnpu
cTU2Zm53WVVnUzNDQ2NFQWFhWmFWUDJvYU9sLTJVcUw3TVpCckVLd0dUOUlrRVlGb3lXSW1j
MEpoclVXOEtkbjQyWWg0OXdDeXNrVU44LUxmTXlIV2pRQU9NWElOMk0xc1B6NFM2ZV92NXYx
UDNGNl9MWFRkOThYOTh2SmZfOHptZDNjTnJfTnVxR3o2VTAzNW5EeE9LNGJQbm42ZGRUWjI1
dWpqTGtpNDlmcFVNWnhYRGQ4Y3ZFTHF6Y25PelFwN1R3d1pYNHlaajR3cDNuZEJJSzNQNWJk
MkQtVzlfdnRiaWoySVBIZGZyRmZIbndUaHZ3Mk80MllLeU4tblI2MGJIZXJMNnZONHR2ZHVs
UDMwTnZXX1R0NXYxdHNQbTNYYl9wX1ZwdjlwRWZqcHZtODNUVWZtOVdtTTNYelpUbnB6Zmh3
RVBKd3YxdXNQMzViZnJwNzZGVjJVaDVWVDU3US02VVphdXJtUFd5X19iVmZiVGRQMk0zZnZ1
bk9fVmplZFNPXzdpY2pxZDJNeGJmSDJYZjdyNHY5M1hId19MNFQ4Q1RyOVVqUHdieC0tdDNz
X3U3bjEtV21HMy1jLU9sSjc2dzNUNUg5OHNYM1hZZEE4NnJ6YUxkZmJiNDBuM2ZiZGJOb2pn
ZzFKeU52bTE1NDAzbTYyQzJibzRMYlp2LTFlMzJBWlB1NTZkUnNkeDlYLTJiMThLOW04dmR5
dDIzV3k4WG1vVm4tNkdaLVgtN1dmM1ZET3lkdVhwMjBLcGIzVGoyYTlUVDAxZjg2WFoySzlj
R2xYc2ZUcFpPWEY5UDZ3WjBIZl9aMjdjY1RtMWNkakFfNzNlUTBzYy1EUHljM042cmUzZlpu
ODlCbmx5SnZiTW1iYnNMZFljSkVGem9IenN5Uk0zUGd6RHpCbVRseVpzNDVjeWh4NUZIUENE
aEFyNkZqX2Z5emFfOEFCTllKcWc9PSZhbXA7YW1wO2xhbmc9c2FnZSI+aGVyZTwvYT48L3A+
PGRpdiBjbGFzcz0ieWdyb3Vwcy1xdW90ZWQiPjxicj48L2Rpdj48ZGl2IGNsYXNzPSJ5Z3Jv
dXBzLXF1b3RlZCI+SSBqdXN0IG5vdGljZWQgdGhhdCB0aGUgc2FnZSBjZWxsIHNlcnZlciBw
cm9iYWJseSBVUkwgZW5jb2RlZCB0aGUgd2hvbGUgc2NyaXB0IGFuZCBwdXQgaXQgaW4gdGhl
IHNoYXJlZCBVUkwuIFNvIGV2ZXJ5IHRpbWUgSSBjaGFuZ2UgdGhlIHNjcmlwdCwgdGhlIHNo
YXJhYmxlIFVSTCBjaGFuZ2VzLjwvZGl2PjxkaXYgY2xhc3M9Inlncm91cHMtcXVvdGVkIj48
YnI+PC9kaXY+PGRpdiBjbGFzcz0ieWdyb3Vwcy1xdW90ZWQiPk5hbjxicj48YnI+LS0tSW4g
NERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwgJmx0O2FuZHJleWFzdHJlbGluQC4uLiZndDsg
d3JvdGU6PGJyPjxicj48ZGl2IGlkPSJ5Z3Jwcy15aXYtNTI5NzUxNTI1Ij48cD5OYW4sPC9w
PjxwPiZuYnNwOyBJdCYjMzk7cyB2ZXJ5IGVhc3kgdG8gY2hlY2sgdGhhdCBrZXJuZWwgb2Yg
M0Mgc3lzdGVtIGxheXMgaW4gdGhlIGtlcm5lbCBvZiAyQzogdGFrZSBjb21iaW5lZCBtYXRy
aXggKHdpdGggMTIwIGNvbHVtbnMgYW5kIDEzMj02MCs3MiByb3dzKSBhbmQgY29tcHV0ZSBp
dHMgcmFuay4gSWYgeW91IGdldCA0NCwgdGhlbiB5b3VyJm5ic3A7dGhlb3J5IGlzIHJpZ2h0
LjwvcD48cD4mbmJzcDsgU28gd2UgaGF2ZSBvbmx5IDggZGVncmVlcyBvZiBmcmVlZG9tIGJl
dHdlZW4gMkMgYW5kIDNDPyBJbnRlcmVzdGluZy4gSSYjMzk7dmUgZXhwZWN0ZWQgbXVjaCBt
b3JlLi4uIEkmIzM5O2xsIHRoaW5rIGFib3V0IGl0LjwvcD48cD48YnI+PC9wPjxwPkFuZHJl
eS48L3A+PHA+PGJyPjwvcD48L2Rpdj48L2Rpdj4=
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
TWVsaW5kYSwNCiANCg0KICAgIEl0IHdhcyBtZXNzYWdlIDI5MTE6IGh0dHBzOi8vZ3JvdXBz
LnlhaG9vLmNvbS9uZW8vZ3JvdXBzLzREX0N1YmluZy9jb252ZXJzYXRpb25zL21lc3NhZ2Vz
LzI5MTEgaHR0cHM6Ly9ncm91cHMueWFob28uY29tL25lby9ncm91cHMvNERfQ3ViaW5nL2Nv
bnZlcnNhdGlvbnMvbWVzc2FnZXMvMjkxMQ0KICAgIFllcywgaXQgbWF5IGJlIHBvc3NpYmxl
IHRvIHNob3cgMTIwIGJhbGxzIGNvbm5lY3RlZCBieSBncmVlbiBhbmQgcmVkIGxpbmVzLiBD
bGljayBpbiBlYWNoIGJhbGwgY2hhbmdlcyBjb2xvcnMgb2YgYWxsIGxpbmVzIHBhc3Npbmcg
dGhyb3VnaCBpdC4gR29hbCBpcyB0byBtYWtlIGFsbCBsaW5lcyBncmVlbg0KICAgRm9yIG9y
aWVudGF0aW9uIHlvdSBjYW4gZW5hYmxlIHVzZXIgdG8gY2hhbmdlIGNvbG9ycyBvZiBiYWxs
cyAoc2F5LCBmcm9tIHdoaXRlIHRvIHllbGxvdyBhbmQgYmFjaykgaW5kZXBlbmRlbnRseSBv
ZiBsaW5lcyBjb2xvcnMuDQogICBXaXRoIDJeMzYgZGlmZmVyZW50IHNpdHVhdGlvbnMgdGhp
cyBwdXp6bGUgbWF5IGJlIG5vdCB2ZXJ5IGVhc3ksIGFuZCBpdCBjYW4gZ2l2ZSBnb29kIGlk
ZWEgYWJvdXQgMTIwLWNlbGwgZ2VvbWV0cnkuDQogDQoNCiAgIEFuZHJleSANCg==
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+TWVsaW5kYSw8L3A+PHA+PGJyPjwvcD48cD4mbmJzcDsmbmJzcDsgSXQgd2FzIG1lc3Nh
Z2UgMjkxMTogPGEgcmVsPSJub2ZvbGxvdyIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9Imh0dHBz
Oi8vZ3JvdXBzLnlhaG9vLmNvbS9uZW8vZ3JvdXBzLzREX0N1YmluZy9jb252ZXJzYXRpb25z
L21lc3NhZ2VzLzI5MTEiPmh0dHBzOi8vZ3JvdXBzLnlhaG9vLmNvbS9uZW8vZ3JvdXBzLzRE
X0N1YmluZy9jb252ZXJzYXRpb25zL21lc3NhZ2VzLzI5MTE8L2E+PC9wPjxwPiZuYnNwOyZu
YnNwOyBZZXMsIGl0IG1heSBiZSBwb3NzaWJsZSB0byBzaG93IDEyMCBiYWxscyBjb25uZWN0
ZWQgYnkgZ3JlZW4gYW5kIHJlZCBsaW5lcy4gQ2xpY2sgaW4gZWFjaCBiYWxsIGNoYW5nZXMg
Y29sb3JzIG9mIGFsbCBsaW5lcyBwYXNzaW5nIHRocm91Z2ggaXQuIEdvYWwgaXMgdG8gbWFr
ZSBhbGwgbGluZXMgZ3JlZW48L3A+PHA+Jm5ic3A7IEZvciBvcmllbnRhdGlvbiB5b3UgY2Fu
IGVuYWJsZSB1c2VyIHRvIGNoYW5nZSBjb2xvcnMgb2YgYmFsbHMgKHNheSwgZnJvbSB3aGl0
ZSB0byB5ZWxsb3cgYW5kIGJhY2spIGluZGVwZW5kZW50bHkgb2YgbGluZXMgY29sb3JzLjwv
cD48cD4mbmJzcDsgV2l0aCAyXjM2IGRpZmZlcmVudCBzaXR1YXRpb25zJm5ic3A7dGhpcyBw
dXp6bGUmbmJzcDttYXkgYmUgbm90IHZlcnkgZWFzeSwgYW5kJm5ic3A7aXQgY2FuIGdpdmUg
Z29vZCBpZGVhIGFib3V0IDEyMC1jZWxsIGdlb21ldHJ5LjwvcD48cD48YnI+PC9wPjxwPiZu
YnNwOyBBbmRyZXkmbmJzcDs8L3A+
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--------------000809000706030102020607
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Ah, thanks for the reference, Andrey. Yahoo groups changed their UI
recently and I can't figure out how to search within all messages. Do
you know how?
I think that your line-based suggestion is different from both Nan's
geometry-based and my cell-based ideas. It sounds to me like your idea
makes the most sense on an unsliced puzzle. IE strictly 1C pieces only.
Is that right? That might make it the easiest of the 3, though every
click would affect 1/3 of the whole puzzle, so perhaps. It could also be
quite lovely. I could even imagine creating a physical version of this.
-Melinda
On 1/30/2014 4:18 PM, andreyastrelin@yahoo.com wrote:
>
>
> Melinda,
>
>
> It was message 2911:
> https://groups.yahoo.com/neo/groups/4D_Cubing/conversations/messages/2911
>
> Yes, it may be possible to show 120 balls connected by green and
> red lines. Click in each ball changes colors of all lines passing
> through it. Goal is to make all lines green
>
> For orientation you can enable user to change colors of balls (say,
> from white to yellow and back) independently of lines colors.
>
> With 2^36 different situations this puzzle may be not very easy,
> and it can give good idea about 120-cell geometry.
>
>
> Andrey
>
>
>
>
--------------000809000706030102020607
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
Melinda,
=C2=A0=C2=A0 It was message 2911: rel=3D"nofollow" target=3D"_blank"
href=3D"https://groups.yahoo.com/neo/groups/4D_Cubing/conversations/message=
s/2911">https://groups.yahoo.com/neo/groups/4D_Cubing/conversations/message=
s/2911
=C2=A0=C2=A0 Yes, it may be possible to show 120 balls connected b=
y green
and red lines. Click in each ball changes colors of all lines
passing through it. Goal is to make all lines green
=C2=A0 For orientation you can enable user to change colors of bal=
ls
(say, from white to yellow and back) independently of lines
colors.
=C2=A0 With 2^36 different situations=C2=A0this puzzle=C2=A0may be=
not very
easy, and=C2=A0it can give good idea about 120-cell geometry.
=C2=A0 Andrey=C2=A0
=20=20=20=20=20=20
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
TWVsaW5kYSwNCiANCg0KIEkgZW52aXNpb24gdGhlICJsaWdodHMgb3V0IiBwdXp6bGVzIGFz
IGluc3BpcmVkIGJ5IHRoZSBwYXJpdHkgb2YgbWlycm9yIFogcHV6emxlcy4gVGhleSBkb24n
dCBoYXZlIHRvIGJlIGV4YWN0bHkgaG9tb21vcnBoaWMgdG8gdGhlIG1pcnJvciBaIHB1enps
ZXMuIEFzIGxvbmcgYXMgdGhleSBhcmUgaW50ZXJlc3RpbmcgdG8gc29sdmUgYW5kIHRoZSBv
cGVyYXRpb25zIGFyZSBpbnR1aXRpdmUsIHRoZXkgY2FuIGJlIGdvb2QgcHV6emxlcyBieSB0
aGVtc2VsdmVzLiBJdCdsbCBiZSBncmVhdCBpZiBzdWNoIHB1enpsZXMgdGhhdCBhdHRyYWN0
IHBlb3BsZSB3aG8gaGF2ZSBuZXZlciBoZWFyZCBvZiB0aGUgZm91cnRoIGRpbWVuc2lvbiBv
ciBkb24ndCBrbm93IHRoZSB3b3JkICJkb2RlY2FoZWRyb24iLg0KIA0KDQogQW5kcmV5LA0K
IA0KDQogSSdtIHNwZW5kaW5nIHRpbWUgdG8gdGhpbmsgYWJvdXQgdGhlIDNDIG9yYml0cy4g
SSBoYXZlIGEgMTIwLWNlbGwgWm9tZSBtb2RlbCAoaHR0cDovL3pvbWV0b29sLmNvbS9wcm9k
dWN0cy9kZXRhaWwvaHlwZXJkbykgYXQgaG9tZS4gSSBmaW5kIGl0IHVzZWZ1bC4gSXQncyBh
IHN0cmljdCBvcnRob2dyYXBoaWMgcHJvamVjdGlvbiBvZiB0aGUgMTIwLWNlbGwgaW50byAz
RCwgY2VsbCBmaXJzdC4gM0MgcGllY2VzIGluIGVhY2ggb3JiaXQgYXJlIHBhcmFsbGVsIGVk
Z2VzLiBUaGUgY29sb3IgY29kaW5nIG9mIHRoZSBlZGdlcyBwcm92ZXMgdXNlZnVsLiANCiAN
Cg0KIFRoaXMgcHV6emxlIHJlYWxseSBoYXMgdG8gZG8gd2l0aCBoYXJkY29yZSA0RCBnZW9t
ZXRyeS4gSSBsaWtlIGl0Lg0KIA0KDQogTmFuDQo=
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+TWVsaW5kYSw8L3A+PHA+PGJyPjwvcD48cD5JIGVudmlzaW9uIHRoZSAmcXVvdDtsaWdo
dHMgb3V0JnF1b3Q7IHB1enpsZXMgYXMgaW5zcGlyZWQgYnkgdGhlIHBhcml0eSBvZiBtaXJy
b3IgWiBwdXp6bGVzLiBUaGV5IGRvbiYjMzk7dCBoYXZlIHRvIGJlIGV4YWN0bHkgaG9tb21v
cnBoaWMgdG8gdGhlIG1pcnJvciBaIHB1enpsZXMuIEFzIGxvbmcgYXMgdGhleSBhcmUgaW50
ZXJlc3RpbmcgdG8gc29sdmUgYW5kIHRoZSBvcGVyYXRpb25zIGFyZSBpbnR1aXRpdmUsIHRo
ZXkgY2FuIGJlIGdvb2QgcHV6emxlcyBieSB0aGVtc2VsdmVzLiBJdCYjMzk7bGwgYmUgZ3Jl
YXQgaWYgc3VjaCBwdXp6bGVzIHRoYXQgYXR0cmFjdCBwZW9wbGUgd2hvIGhhdmUgbmV2ZXIg
aGVhcmQgb2YgdGhlIGZvdXJ0aCBkaW1lbnNpb24gb3IgZG9uJiMzOTt0IGtub3cgdGhlIHdv
cmQgJnF1b3Q7ZG9kZWNhaGVkcm9uJnF1b3Q7LjwvcD48cD48YnI+PC9wPjxwPkFuZHJleSw8
L3A+PHA+PGJyPjwvcD48cD5JJiMzOTttIHNwZW5kaW5nIHRpbWUgdG8gdGhpbmsgYWJvdXQg
dGhlIDNDIG9yYml0cy4gSSBoYXZlIGEgMTIwLWNlbGwgWm9tZSBtb2RlbCAoaHR0cDovL3pv
bWV0b29sLmNvbS9wcm9kdWN0cy9kZXRhaWwvaHlwZXJkbykgYXQgaG9tZS4gSSBmaW5kIGl0
IHVzZWZ1bC4gSXQmIzM5O3MgYSBzdHJpY3Qgb3J0aG9ncmFwaGljIHByb2plY3Rpb24gb2Yg
dGhlIDEyMC1jZWxsIGludG8gM0QsIGNlbGwgZmlyc3QuIDNDIHBpZWNlcyBpbiBlYWNoIG9y
Yml0IGFyZSBwYXJhbGxlbCBlZGdlcy4gVGhlIGNvbG9yIGNvZGluZyBvZiB0aGUgZWRnZXMg
cHJvdmVzIHVzZWZ1bC4mbmJzcDs8L3A+PHA+PGJyPjwvcD48cD5UaGlzIHB1enpsZSByZWFs
bHkgaGFzIHRvIGRvIHdpdGggaGFyZGNvcmUgNEQgZ2VvbWV0cnkuIEkgbGlrZSBpdC48L3A+
PHA+PGJyPjwvcD48cD5OYW48L3A+
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
RmluYWxseSwgSSd2ZSBzb2x2ZWQgdGhlIDEyMC1jZWxsIE1pcnJvciBaLiBJdCB0b29rIG1l
IDM1NzMzMCBzdGVwcyAoaGFwcGVuIHRvIGJlIGFuIGV2ZW4gbnVtYmVyISkuIFRoZSBnYW1l
IGNsb2NrIHNob3dzIDM4IGhvdXJzIGFuZCA0NSBtaW51dGVzLg0KIA0KDQogQXMgbWVudGlv
bmVkIGVhcmxpZXIsIEkgdXNlZCBzb21lIHNjcmlwdCB0byBhbmFseXplIHRoZSBvcmJpdHMu
IEkgZm91bmQgdGhhdCBhZnRlciBzb2x2aW5nIHRoZSAzQyBwaWVjZXMsIGFsbCAyQyBvcmJp
dHMgYXJlIGV2ZW5seSBwZXJtdXRlZC4gU28sIGFzIHBsYW5uZWQsIEkgc29sdmVkIDNDIGZp
cnN0LCB0aGVuIDJDLCB0aGVuIDRDLiAzQyB0b29rIGFib3V0IDE5IGhvdXJzIGFuZCA4NWsg
bW92ZXM7IDJDIGFib3V0IDIgaG91ciBhbmQgMjRrIG1vdmVzOyBhbmQgNEMgYWJvdXQgMTcu
NSBob3VycyBhbmQgMjQ4ayBtb3Zlcy4gMkMgcGllY2VzIHdlcmUgaW5kZWVkIGVhc3kgYWZ0
ZXIgM0Mgd2VyZSBzb2x2ZWQuDQogDQoNCiBJIGhhdmUgdG8gYWRtaXQgdGhhdCB0aGlzIHRp
bWUgSSB3ZW50IHRvbyBkZWVwIHVzaW5nIGNvbXB1dGVyLiBJIHVzZWQgYSBwYXJpdHkgZml4
aW5nIHN0cmF0ZWd5IGZvdW5kIGJ5IHRoZSBzY3JpcHQgZm9yIDNDIG9yYml0czogZmxpcHBp
bmcgMTkgY2VsbHMgY2hhbmdlcyB0aGUgcGFyaXR5IG9mIHNldmVuIDNDIG9yYml0cyB3aGlj
aCBwYXNzIHRocm91Z2ggb25lIGNlbGwuIFRoaXMgaXMgdGhlIG1vc3QgcG93ZXJmdWwgM0Mg
cGFyaXR5IGFsZ29yaXRobSBJJ3ZlIGZvdW5kLiBXaXRob3V0IGNvbXB1dGVyIEknZCBoYXZl
IGEgaGFyZCB0aW1lIGZpbmRpbmcgc3VjaCAxOSBjZWxscy4gSSB1c2VkIHRoaXMgYWxnb3Jp
dGhtIHNldmVyYWwgdGltZXMgdG93YXJkcyB0aGUgZW5kIG9mIHRoZSAzQyBzdGVwLiBJJ20g
Y2VydGFpbmx5IG5vdCBwcm91ZCBvZiBpdC4gQnV0IGl0J3MgaGFyZCBub3QgdG8gbG9vayBh
dCB0aGUgMTkgY2VsbHMgd2hlbiB0aGUgc2NyaXB0IGhhcyBhbHJlYWR5IGdlbmVyYXRlZCBp
dC4NCiANCg0KIEFzIGJlZm9yZSwgSSB1c2VkIGEgbW9uaXRvcmluZyBzY3JpcHQgdG8ga2Vl
cCB0cmFjayBvZiBwcm9ncmVzcyBzbyB0aGF0IEkga25vdyBpdCB3aGVuIEkgc2NyZXcgdXAg
dGhpbmdzLiBJIGFsc28gdXNlZCBHaXQgdG8gYmFja3VwIHRoZSBtYWNybyBhbmQgbG9nIGZp
bGVzLiANCiANCg0KIFNjcmlwdHMgYW5kIGZpbGVzIGFyZSBkdW1wZWQgaW50byB0aGlzIGdp
dGh1YiByZXBvOg0KIA0KDQogaHR0cHM6Ly9naXRodWIuY29tL25hbm1hODAvWjEyMA0KIA0K
DQogSSd2ZSBuZXZlciBvcmdhbml6ZWQgdGhlIHNjcmlwdCB0aG91Z2guLi4NCiANCg0KIEFu
ZHJleSwgdGhhbmsgeW91IGZvciBtYWtpbmcgdGhpcyBwdXp6bGUhIEFsc28sIGlmIHlvdSBk
aWRuJ3Qgc29sdmUgdGhlIHB1enpsZSwgSSB3b3VsZG4ndCBldmVuIGtub3cgaG93IGRlbGlj
YXRlIHRoaXMgcHV6emxlIHdhcyBhbmQgSSB3b3VsZG4ndCBldmVuIGF0dGVtcHQgaXQuDQog
DQoNCiBOYW4NCiANCg0KDQo=
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PGRpdj48ZGl2PkZpbmFsbHksIEkmIzM5O3ZlIHNvbHZlZCB0aGUgMTIwLWNlbGwgTWlycm9y
IFouIEl0IHRvb2sgbWUgMzU3MzMwIHN0ZXBzIChoYXBwZW4gdG8gYmUgYW4gZXZlbiBudW1i
ZXIhKS4gVGhlIGdhbWUgY2xvY2sgc2hvd3MgMzggaG91cnMgYW5kIDQ1IG1pbnV0ZXMuPC9k
aXY+PGRpdj48YnI+PC9kaXY+PGRpdj5BcyBtZW50aW9uZWQgZWFybGllciwgSSB1c2VkIHNv
bWUgc2NyaXB0IHRvIGFuYWx5emUgdGhlIG9yYml0cy4gSSBmb3VuZCB0aGF0IGFmdGVyIHNv
bHZpbmcgdGhlIDNDIHBpZWNlcywgYWxsIDJDIG9yYml0cyBhcmUgZXZlbmx5IHBlcm11dGVk
LiBTbywgYXMgcGxhbm5lZCwgSSBzb2x2ZWQgM0MgZmlyc3QsIHRoZW4gMkMsIHRoZW4gNEMu
IDNDIHRvb2sgYWJvdXQgMTkgaG91cnMgYW5kIDg1ayBtb3ZlczsgMkMgYWJvdXQgMiBob3Vy
IGFuZCAyNGsgbW92ZXM7IGFuZCA0QyBhYm91dCAxNy41IGhvdXJzIGFuZCAyNDhrIG1vdmVz
LiAyQyBwaWVjZXMgd2VyZSBpbmRlZWQgZWFzeSBhZnRlciAzQyB3ZXJlIHNvbHZlZC48L2Rp
dj48ZGl2Pjxicj48L2Rpdj48ZGl2PkkgaGF2ZSB0byBhZG1pdCB0aGF0IHRoaXMgdGltZSBJ
IHdlbnQgdG9vIGRlZXAgdXNpbmcgY29tcHV0ZXIuIEkgdXNlZCBhIHBhcml0eSBmaXhpbmcg
c3RyYXRlZ3kgZm91bmQgYnkgdGhlIHNjcmlwdCBmb3IgM0Mgb3JiaXRzOiBmbGlwcGluZyAx
OSBjZWxscyBjaGFuZ2VzIHRoZSBwYXJpdHkgb2Ygc2V2ZW4gM0Mgb3JiaXRzIHdoaWNoIHBh
c3MgdGhyb3VnaCBvbmUgY2VsbC4gVGhpcyBpcyB0aGUgbW9zdCBwb3dlcmZ1bCAzQyBwYXJp
dHkgYWxnb3JpdGhtIEkmIzM5O3ZlIGZvdW5kLiBXaXRob3V0IGNvbXB1dGVyIEkmIzM5O2Qg
aGF2ZSBhIGhhcmQgdGltZSBmaW5kaW5nIHN1Y2ggMTkgY2VsbHMuIEkgdXNlZCB0aGlzIGFs
Z29yaXRobSBzZXZlcmFsIHRpbWVzIHRvd2FyZHMgdGhlIGVuZCBvZiB0aGUgM0Mgc3RlcC4g
SSYjMzk7bSBjZXJ0YWlubHkgbm90IHByb3VkIG9mIGl0LiBCdXQgaXQmIzM5O3MgaGFyZCBu
b3QgdG8gbG9vayBhdCB0aGUgMTkgY2VsbHMgd2hlbiB0aGUgc2NyaXB0IGhhcyBhbHJlYWR5
IGdlbmVyYXRlZCBpdC48L2Rpdj48ZGl2Pjxicj48L2Rpdj48ZGl2PkFzIGJlZm9yZSwgSSB1
c2VkIGEgbW9uaXRvcmluZyBzY3JpcHQgdG8ga2VlcCB0cmFjayBvZiBwcm9ncmVzcyBzbyB0
aGF0IEkga25vdyBpdCB3aGVuIEkgc2NyZXcgdXAgdGhpbmdzLiBJIGFsc28gdXNlZCBHaXQg
dG8gYmFja3VwIHRoZSBtYWNybyBhbmQgbG9nIGZpbGVzLiZuYnNwOzwvZGl2PjxkaXY+PGJy
PjwvZGl2PjxkaXY+U2NyaXB0cyBhbmQgZmlsZXMgYXJlIGR1bXBlZCBpbnRvIHRoaXMgZ2l0
aHViIHJlcG86PC9kaXY+PGRpdj48YnI+PC9kaXY+PGRpdj5odHRwczovL2dpdGh1Yi5jb20v
bmFubWE4MC9aMTIwPC9kaXY+PGRpdj48YnI+PC9kaXY+PGRpdj5JJiMzOTt2ZSBuZXZlciBv
cmdhbml6ZWQgdGhlIHNjcmlwdCB0aG91Z2guLi48L2Rpdj48ZGl2Pjxicj48L2Rpdj48ZGl2
PkFuZHJleSwgdGhhbmsgeW91IGZvciBtYWtpbmcgdGhpcyBwdXp6bGUhIEFsc28sIGlmIHlv
dSBkaWRuJiMzOTt0IHNvbHZlIHRoZSBwdXp6bGUsIEkgd291bGRuJiMzOTt0IGV2ZW4ga25v
dyBob3cgZGVsaWNhdGUgdGhpcyBwdXp6bGUgd2FzIGFuZCBJIHdvdWxkbiYjMzk7dCBldmVu
IGF0dGVtcHQgaXQuPC9kaXY+PGRpdj48YnI+PC9kaXY+PGRpdj5OYW48L2Rpdj48ZGl2Pjxi
cj48L2Rpdj48L2Rpdj4=
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--------------050009090404080801030209
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: quoted-printable
That's a wonderful puzzle story, Nan. Congratulations! In the middle, I=20
believe you said it's the hardest puzzle you ever attempted, right? It=20
certainly sounds like a bear! Is anybody else working on it or thinking=20
about it? I may feel as frightened of it as other people are of MC4D=20
when I describe it to them. I often don't have the heart to tell them of=20
all the other crazy puzzles we deal with. The human mind can take only=20
so much amazement at one time.
I don't think you should feel disappointed by having used computer=20
assistance, especially because you wrote the code. That code is an=20
extension of your mind and required you to understand what you wanted it=20
to do which tells me that with sufficient time and patience, you could=20
in theory have performed it all by hand. Don Hatch wrote a program to=20
solve the 2^d and 3^d cubes in all dimensions > 2 I believe. I therefore=20
believe that he has solved them all, just not in the same way as human=20
solutions. This is by the same extension that we consider macro=20
solutions to be completely valid too, just not comparable to no-macro=20
solutions.
I am particularly curious about that 3C stage and wonder whether it=20
might suggest a much smaller puzzle with the same sort of difficulty.=20
Can you think of a 3C-only analog puzzle that requires a similarly deep=20
dive to solve but perhaps not involving so many cells? For instance, how=20
does this step compare with, say, an edges-only version of the 24Z? Or=20
MC4DZ, or even a 3D Void Cube=20
Now that I look at that last puzzle I realize that it looks and turns=20
exactly like a subset of MC4D! I want one! It looks simple but I expect=20
that a Z version would be much more difficult if it were somehow=20
possible to build.
So what's next for you, Nan? Some time outside in our lovely pre-spring=20
weather perhaps?
-Melinda
On 3/7/2014 11:15 PM, mananself@gmail.com wrote:
>
>
> Finally, I've solved the 120-cell Mirror Z. It took me 357330 steps=20
> (happen to be an even number!). The game clock shows 38 hours and 45=20
> minutes.
>
> As mentioned earlier, I used some script to analyze the orbits. I=20
> found that after solving the 3C pieces, all 2C orbits are evenly=20
> permuted. So, as planned, I solved 3C first, then 2C, then 4C. 3C took=20
> about 19 hours and 85k moves; 2C about 2 hour and 24k moves; and 4C=20
> about 17.5 hours and 248k moves. 2C pieces were indeed easy after 3C=20
> were solved.
>
> I have to admit that this time I went too deep using computer. I used=20
> a parity fixing strategy found by the script for 3C orbits: flipping=20
> 19 cells changes the parity of seven 3C orbits which pass through one=20
> cell. This is the most powerful 3C parity algorithm I've found.=20
> Without computer I'd have a hard time finding such 19 cells. I used=20
> this algorithm several times towards the end of the 3C step. I'm=20
> certainly not proud of it. But it's hard not to look at the 19 cells=20
> when the script has already generated it.
>
> As before, I used a monitoring script to keep track of progress so=20
> that I know it when I screw up things. I also used Git to backup the=20
> macro and log files.
>
> Scripts and files are dumped into this github repo:
>
> https://github.com/nanma80/Z120
>
> I've never organized the script though...
>
> Andrey, thank you for making this puzzle! Also, if you didn't solve=20
> the puzzle, I wouldn't even know how delicate this puzzle was and I=20
> wouldn't even attempt it.
>
> Nan
>
>
>
>=20
--------------050009090404080801030209
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
">
That's a wonderful puzzle story, Nan. Congratulations! In the
middle, I believe you said it's the hardest puzzle you ever
attempted, right? It certainly sounds like a bear! Is anybody else
working on it or thinking about it? I may feel as frightened of it
as other people are of MC4D when I describe it to them. I often
don't have the heart to tell them of all the other crazy puzzles we
deal with. The human mind can take only so much amazement at one
time.
I don't think you should feel disappointed by having used computer
assistance, especially because you wrote the code. That code is an
extension of your mind and required you to understand what you
wanted it to do which tells me that with sufficient time and
patience, you could in theory have performed it all by hand. Don
Hatch wrote a program to solve the 2^d and 3^d cubes in all
dimensions > 2 I believe. I therefore believe that he has solved
them all, just not in the same way as human solutions. This is by
the same extension that we consider macro solutions to be completely
valid too, just not comparable to no-macro solutions.
I am particularly curious about that 3C stage and wonder whether it
might suggest a much smaller puzzle with the same sort of
difficulty. Can you think of a 3C-only analog puzzle that requires a
similarly deep dive to solve but perhaps not involving so many
cells? For instance, how does this step compare with, say, an
edges-only version of the 24Z? Or MC4DZ, or even a href=3D"http://www.youtube.com/watch?v=3D7zpDVYCS3Aw">3D Void Cube>
Z for that matter?
Now that I look at that last puzzle I realize that it looks and
turns exactly like a subset of MC4D! I want one! It looks simple but
I expect that a Z version would be much more difficult if it were
somehow possible to build.
So what's next for you, Nan? Some time outside in our lovely
pre-spring weather perhaps?
-Melinda
357330 steps (happen to be an even number!). The game clock
shows 38 hours and 45 minutes.
orbits. I found that after solving the 3C pieces, all 2C
orbits are evenly permuted. So, as planned, I solved 3C first,
then 2C, then 4C. 3C took about 19 hours and 85k moves; 2C
about 2 hour and 24k moves; and 4C about 17.5 hours and 248k
moves. 2C pieces were indeed easy after 3C were solved.
computer. I used a parity fixing strategy found by the script
for 3C orbits: flipping 19 cells changes the parity of seven
3C orbits which pass through one cell. This is the most
powerful 3C parity algorithm I've found. Without computer I'd
have a hard time finding such 19 cells. I used this algorithm
several times towards the end of the 3C step. I'm certainly
not proud of it. But it's hard not to look at the 19 cells
when the script has already generated it.
progress so that I know it when I screw up things. I also used
Git to backup the macro and log files.=C2=A0
didn't solve the puzzle, I wouldn't even know how delicate
this puzzle was and I wouldn't even attempt it.
=20=20=20=20=20=20
--------------050009090404080801030209--
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
TmFuLCANCiBjb25ncmF0dWxhdGlvbnMgd2l0aCB0aGUgc29sdmUgb2YgMTIwWiEgU28gd2Ug
aGF2ZSBzb2x2ZXMgMTIwLWNlbGxzIHR3byB0aW1lcy4uLiBJIHRoaW5rIHRoYXQgSSdsbCB0
cnkgb25lIG1vcmUgc29sdmUgb2YgaXQuIFRoaXMgdGltZSBpdCBzaG91bGQgYmUgUm9pY2Un
cyAxMjAtY2VsbCwgd2l0aG91dCBtYWNyb3MuDQogDQoNCiBNZWxpbmRhLA0KIEl0IHNob3Vs
ZCBiZSBwb3NzaWJsZSB0byBtYWtlIHNpbXBsaWZpZWQgdmVyc2lvbiBvZiBaIHB1enpsZSAt
IGZvciBleGFtcGxlLCB2ZXJ0ZXgtY2VudGVyZWQgMjQtY2VsbCBvciAxNi1jZWxsLiBJJ2xs
IHRoaW5rIGFib3V0IHRoZW0uDQogDQoNCiBBbmRyZXkNCg0K
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PHA+TmFuLCA8L3A+PHA+Y29uZ3JhdHVsYXRpb25zIHdpdGggdGhlIHNvbHZlIG9mIDEyMFoh
IFNvIHdlIGhhdmUgc29sdmVzIDEyMC1jZWxscyB0d28gdGltZXMuLi4gSSB0aGluayB0aGF0
IEkmIzM5O2xsIHRyeSBvbmUgbW9yZSBzb2x2ZSBvZiBpdC4gVGhpcyB0aW1lIGl0IHNob3Vs
ZCBiZSBSb2ljZSYjMzk7cyAxMjAtY2VsbCwgd2l0aG91dCBtYWNyb3MuPC9wPjxwPjxicj48
L3A+PHA+TWVsaW5kYSw8L3A+PHA+SXQgc2hvdWxkIGJlIHBvc3NpYmxlIHRvIG1ha2Ugc2lt
cGxpZmllZCB2ZXJzaW9uIG9mIFogcHV6emxlIC0gZm9yIGV4YW1wbGUsIHZlcnRleC1jZW50
ZXJlZCAyNC1jZWxsIG9yIDE2LWNlbGwuIEkmIzM5O2xsIHRoaW5rIGFib3V0IHRoZW0uPC9w
PjxwPjxicj48L3A+PHA+QW5kcmV5PGJyIGNsYXNzPSJ5dWktY3Vyc29yIj48L3A+
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
TWVsaW5kYSBhbmQgQW5kcmV5LCBUaGFua3MuDQogDQoNCiBBcyBJIHBvc3RlZCBlYXJsaWVy
IGhlcmUsIHdoZW4gSSBzb2x2ZWQgMjRaLCBJIHNvbHZlZCAyQyBmaXJzdC4gVGhlcmUsIDJD
IG9yYml0cyBkbyBoYXZlIGEgY29tcGxpY2F0ZWQgb3JiaXQgcGFyaXR5IHNpdHVhdGlvbi4g
QnV0IGJlY2F1c2UgdGhlcmUgYXJlIGxlc3Mgb3JiaXRzIGFuZCBsZXNzIHBpZWNlcywgdGhl
IHBhcml0eSBjYW4gYmUgc29sdmVkIGludHVpdGl2ZWx5LiBBZnRlciBzb2x2aW5nIDJDLCAz
QyBvcmJpdHMgYXJlIGFsbCBldmVubHkgcGVybXV0ZWQuIFNvIG5vIGRyYW1hIGZvciAzQyBp
biAyNFosIHVubGlrZSBpbiAxMjBaLiBNYXliZSBpdCdzIGJlY2F1c2UgYW4gb2N0YWhlZHJv
biBoYXMgNiAoZXZlbiBudW1iZXIpIHBhaXJzIG9mIGVkZ2VzLCBidXQgYSBkb2RlY2FoZWRy
b24gaGFzIDE1IChvZGQgbnVtYmVyKSBwYWlycyBvZiBlZGdlcy4NCiANCg0KIDNeNCBaIGlz
IGV2ZW4gY3V0ZXIuIEkgbG9va2VkIHVwIG15IG5vdGUsIGFuZCBJIHNvbHZlZCAzXjQgWiB3
aXRoIHRoZSBvcmRlciBvZiA0QywgMkMsIDNDLiBJdCdzIGJlY2F1c2UgNEMgcGllY2VzIGFy
ZSBpbiBhIHVudXN1YWwgZ3JvdXAuIEFuZCB0aGVyZSBhcmUgcGFyaXR5IHNpdHVhdGlvbiBp
biBlYWNoIHN0ZXAuIEJ1dCB0aGV5IGFyZSBub3QgdmVyeSBkaWZmaWN1bHQuIEl0J3MgaGFy
ZCB0byBjb21wYXJlIHRoYXQgcHV6emxlIHRvIDI0WiBhbmQgMTIwWi4NCiANCg0KIEFuZHJl
eSwgeW91IG1lbnRpb25lZCB0aGF0IHlvdSB3b3VsZCBsaWtlIHRvIHRyeSB2ZXJ0ZXggdHVy
bmluZyAyNC1jZWxsIGFuZCAxNi1jZWxsLiBBcmUgdGhleSBqdXN0IGVxdWl2YWxlbnQgdG8g
Y2VsbC10dXJuaW5nIDI0LWNlbGwgYW5kIDgtY2VsbCBkdWUgdG8gZHVhbGl0eT8NCiANCg0K
IE5hbg0K
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
PGRpdj5NZWxpbmRhIGFuZCBBbmRyZXksIFRoYW5rcy48L2Rpdj48ZGl2Pjxicj48L2Rpdj48
ZGl2PkFzIEkgcG9zdGVkIGVhcmxpZXIgaGVyZSwgd2hlbiBJIHNvbHZlZCAyNFosIEkgc29s
dmVkIDJDIGZpcnN0LiBUaGVyZSwgMkMgb3JiaXRzIGRvIGhhdmUgYSBjb21wbGljYXRlZCBv
cmJpdCBwYXJpdHkgc2l0dWF0aW9uLiBCdXQgYmVjYXVzZSB0aGVyZSBhcmUgbGVzcyBvcmJp
dHMgYW5kIGxlc3MgcGllY2VzLCB0aGUgcGFyaXR5IGNhbiBiZSBzb2x2ZWQgaW50dWl0aXZl
bHkuIEFmdGVyIHNvbHZpbmcgMkMsIDNDIG9yYml0cyBhcmUgYWxsIGV2ZW5seSBwZXJtdXRl
ZC4gU28gbm8gZHJhbWEgZm9yIDNDIGluIDI0WiwgdW5saWtlIGluIDEyMFouIE1heWJlIGl0
JiMzOTtzIGJlY2F1c2UgYW4gb2N0YWhlZHJvbiBoYXMgNiAoZXZlbiBudW1iZXIpIHBhaXJz
IG9mIGVkZ2VzLCBidXQgYSBkb2RlY2FoZWRyb24gaGFzIDE1IChvZGQgbnVtYmVyKSBwYWly
cyBvZiBlZGdlcy48L2Rpdj48ZGl2Pjxicj48L2Rpdj48ZGl2PjNeNCBaIGlzIGV2ZW4gY3V0
ZXIuIEkgbG9va2VkIHVwIG15IG5vdGUsIGFuZCBJIHNvbHZlZCAzXjQgWiB3aXRoIHRoZSBv
cmRlciBvZiA0QywgMkMsIDNDLiBJdCYjMzk7cyBiZWNhdXNlIDRDIHBpZWNlcyBhcmUgaW4g
YSB1bnVzdWFsIGdyb3VwLiBBbmQgdGhlcmUgYXJlIHBhcml0eSBzaXR1YXRpb24gaW4gZWFj
aCBzdGVwLiBCdXQgdGhleSBhcmUgbm90IHZlcnkgZGlmZmljdWx0LiBJdCYjMzk7cyBoYXJk
IHRvIGNvbXBhcmUgdGhhdCBwdXp6bGUgdG8gMjRaIGFuZCAxMjBaLjwvZGl2PjxkaXY+PGJy
PjwvZGl2PjxkaXY+QW5kcmV5LCB5b3UgbWVudGlvbmVkIHRoYXQgeW91IHdvdWxkIGxpa2Ug
dG8gdHJ5IHZlcnRleCB0dXJuaW5nIDI0LWNlbGwgYW5kIDE2LWNlbGwuIEFyZSB0aGV5IGp1
c3QgZXF1aXZhbGVudCB0byBjZWxsLXR1cm5pbmcgMjQtY2VsbCBhbmQgOC1jZWxsIGR1ZSB0
byBkdWFsaXR5PzwvZGl2PjxkaXY+PGJyPjwvZGl2PjxkaXY+TmFuPC9kaXY+
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
--------------050305090608050901080501
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: quoted-printable
Nan and Andrey,
Perhaps a 3C-only 24-cell will be more difficult without the 2C pieces=20
to help get the 3C pieces into the correct parity? I'm wondering if we=20
can find a puzzle that preserves the most difficult part of the 120Z but=20
in a much smaller puzzle. I'm particularly interested in whether this=20
can be done in 3D. The nature of the Z puzzles would make it hard to=20
imagine how to produce physical versions, but it would be ideal to find=20
the lowest dimension in which this puzzle can exist. Thoughts?
As an aside, I've been meaning to ask Andrey what he would think of=20
renaming the Z puzzles to X. I'm proposing this because the shape of the=20
letter 'X' looks like a map of how all parts of a cell transform through=20
the cell center, ending up at their antipodes. I know it's a little late=20
in the game for this but I keep thinking of it so I thought I'd throw it=20
out there. No pressure, though. I like 'Z' as well because I have a=20
Nissan 350Z. :-)
-Melinda
On 3/8/2014 11:26 AM, mananself@gmail.com wrote:
>
>
> Melinda and Andrey, Thanks.
>
> As I posted earlier here, when I solved 24Z, I solved 2C first. There,=20
> 2C orbits do have a complicated orbit parity situation. But because=20
> there are less orbits and less pieces, the parity can be solved=20
> intuitively. After solving 2C, 3C orbits are all evenly permuted. So=20
> no drama for 3C in 24Z, unlike in 120Z. Maybe it's because an=20
> octahedron has 6 (even number) pairs of edges, but a dodecahedron has=20
> 15 (odd number) pairs of edges.
>
> 3^4 Z is even cuter. I looked up my note, and I solved 3^4 Z with the=20
> order of 4C, 2C, 3C. It's because 4C pieces are in a unusual group.=20
> And there are parity situation in each step. But they are not very=20
> difficult. It's hard to compare that puzzle to 24Z and 120Z.
>
> Andrey, you mentioned that you would like to try vertex turning=20
> 24-cell and 16-cell. Are they just equivalent to cell-turning 24-cell=20
> and 8-cell due to duality?
>
> Nan
>
>
>=20
--------------050305090608050901080501
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
Melinda and Andrey, Thanks.
As I posted earlier here, when I solved 24Z, I solved 2C
first. There, 2C orbits do have a complicated orbit parity
situation. But because there are less orbits and less pieces,
the parity can be solved intuitively. After solving 2C, 3C
orbits are all evenly permuted. So no drama for 3C in 24Z,
unlike in 120Z. Maybe it's because an octahedron has 6 (even
number) pairs of edges, but a dodecahedron has 15 (odd number)
pairs of edges.
3^4 Z is even cuter. I looked up my note, and I solved 3^4 Z
with the order of 4C, 2C, 3C. It's because 4C pieces are in a
unusual group. And there are parity situation in each step. But
they are not very difficult. It's hard to compare that puzzle to
24Z and 120Z.
Andrey, you mentioned that you would like to try vertex
turning 24-cell and 16-cell. Are they just equivalent to
cell-turning 24-cell and 8-cell due to duality?
Nan
=20=20=20=20=20=20=20=20
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64
SSBhbHdheXMgdGhpbmsgdGhlIHNvbHZpbmcgdGhlIG9yYml0IHBhcml0eSBpcyBsaWtlIGEg
TGlnaHRzIE91dCBnYW1lLiBUaGVzZSBkYXlzIEkgZGlkIHNvbWUgcmVzZWFyY2ggYW5kIGZv
dW5kIHNvbWUgTGlnaHRzIE91dCBwdXp6bGVzIG9uIEphYXAncyBwdXp6bGUgcGFnZS4gRmly
c3QgSSBmb3VuZCB0aGlzIE9yYml4IHB1enpsZTogaHR0cDovL3d3dy5qYWFwc2NoLm5ldC9w
dXp6bGVzL29yYml4Lmh0bSBodHRwOi8vd3d3LmphYXBzY2gubmV0L3B1enpsZXMvb3JiaXgu
aHRtDQoNCiBJdCBoYXMgdGhlIHNoYXBlIG9mIGEgZG9kZWNhaGVkcm9uLiBUaGUgdHlwZS0x
IHZlcnNpb24gaXMgYSBzaW1wbGUgYW5kIG5lYXQgTGlnaHRzIE91dCBvbiBhIGRvZGVjYWhl
ZHJvbi4NCiANCg0KIEphYXAgbWFkZSBhIHZlcnkgcG93ZXJmdWwgZ2FtZSwgTGlnaHRzIE91
dCBvbiBhIEdyYXBoLg0KIGh0dHA6Ly93d3cuamFhcHNjaC5uZXQvcHV6emxlcy9sb2dyYXBo
Lmh0bSBodHRwOi8vd3d3LmphYXBzY2gubmV0L3B1enpsZXMvbG9ncmFwaC5odG0NCg0KIE9u
ZSBjYW4gZHJhdyBhbnkgZ3JhcGggYW5kIHRodXMgZGVmaW5lcyBhIExpZ2h0cyBPdXQgcHV6
emxlLiBQbGF5ZXJzIGNhbiBhbHNvIHNoYXJlIHRoZSBwdXp6bGUgZGVmaW5pdGlvbnMgYnkg
dXBsb2FkaW5nIGFuZCBkb3dubG9hZGluZy4gVGhlcmUgYXJlIGEgbG90IG9mIHByZWRlZmlu
ZWQgcHV6emxlcyBhbHJlYWR5LiBBbmQgb2YgY291cnNlIHRoZXJlIGlzbid0IG9uZSB0aGF0
J3MgZXF1aXZhbGVudCB0byAzQyBvZiAxMjAgY2VsbC4gVGhhdCdzIHRvbyBjcmF6eS4uLiBC
dXQgdGhlcmUgaXMgYSBoeXBlcmN1YmUgaW4gdGhlIGZvbGRlciAiTGVzIi4gSSBjb3VsZCBz
cGVuZCBhIGxvdCBvZiB0aW1lIG9uIHRoaXMgZ2FtZS4NCiANCg0KIE1lbGluZGEgYXNrZWQg
bWUgd2hhdCdzIG5leHQgZm9yIG1lLiBJIHdhcyBwbGF5aW5nIDEyMC1jZWxsIE1pcnJvciBa
IG9uIG15IGNvbW11dGUuIFRvZGF5IEkgcGxheWVkIENhbmR5IENydXNoLiBJdCB3YXMgbm90
IGVhc3kuLi4NCiANCg0KIE5hbg0KIA0KDQotLS1JbiA0RF9DdWJpbmdAeWFob29ncm91cHMu
Y29tLCA8bWVsaW5kYUAuLi4+IHdyb3RlIDoNCg0KIE5hbiBhbmQgQW5kcmV5LA0KIA0KIFBl
cmhhcHMgYSAzQy1vbmx5IDI0LWNlbGwgd2lsbCBiZSBtb3JlIGRpZmZpY3VsdCB3aXRob3V0
IHRoZSAyQyBwaWVjZXMgdG8gaGVscCBnZXQgdGhlIDNDIHBpZWNlcyBpbnRvIHRoZSBjb3Jy
ZWN0IHBhcml0eT8gSSdtIHdvbmRlcmluZyBpZiB3ZSBjYW4gZmluZCBhIHB1enpsZSB0aGF0
IHByZXNlcnZlcyB0aGUgbW9zdCBkaWZmaWN1bHQgcGFydCBvZiB0aGUgMTIwWiBidXQgaW4g
YSBtdWNoIHNtYWxsZXIgcHV6emxlLiBJJ20gcGFydGljdWxhcmx5IGludGVyZXN0ZWQgaW4g
d2hldGhlciB0aGlzIGNhbiBiZSBkb25lIGluIDNELiBUaGUgbmF0dXJlIG9mIHRoZSBaIHB1
enpsZXMgd291bGQgbWFrZSBpdCBoYXJkIHRvIGltYWdpbmUgaG93IHRvIHByb2R1Y2UgcGh5
c2ljYWwgdmVyc2lvbnMsIGJ1dCBpdCB3b3VsZCBiZSBpZGVhbCB0byBmaW5kIHRoZSBsb3dl
c3QgZGltZW5zaW9uIGluIHdoaWNoIHRoaXMgcHV6emxlIGNhbiBleGlzdC4gVGhvdWdodHM/
DQogDQogQXMgYW4gYXNpZGUsIEkndmUgYmVlbiBtZWFuaW5nIHRvIGFzayBBbmRyZXkgd2hh
dCBoZSB3b3VsZCB0aGluayBvZiByZW5hbWluZyB0aGUgWiBwdXp6bGVzIHRvIFguIEknbSBw
cm9wb3NpbmcgdGhpcyBiZWNhdXNlIHRoZSBzaGFwZSBvZiB0aGUgbGV0dGVyICdYJyBsb29r
cyBsaWtlIGEgbWFwIG9mIGhvdyBhbGwgcGFydHMgb2YgYSBjZWxsIHRyYW5zZm9ybSB0aHJv
dWdoIHRoZSBjZWxsIGNlbnRlciwgZW5kaW5nIHVwIGF0IHRoZWlyIGFudGlwb2Rlcy4gSSBr
bm93IGl0J3MgYSBsaXR0bGUgbGF0ZSBpbiB0aGUgZ2FtZSBmb3IgdGhpcyBidXQgSSBrZWVw
IHRoaW5raW5nIG9mIGl0IHNvIEkgdGhvdWdodCBJJ2QgdGhyb3cgaXQgb3V0IHRoZXJlLiBO
byBwcmVzc3VyZSwgdGhvdWdoLiBJIGxpa2UgJ1onIGFzIHdlbGwgYmVjYXVzZSBJIGhhdmUg
YSBOaXNzYW4gMzUwWi4gIDotKQ0KIA0KIC1NZWxpbmRhDQogDQogT24gMy84LzIwMTQgMTE6
MjYgQU0sIG1hbmFuc2VsZkAuLi4gbWFpbHRvOm1hbmFuc2VsZkAuLi4gd3JvdGU6DQoNCiBN
ZWxpbmRhIGFuZCBBbmRyZXksIFRoYW5rcy4NCiANCg0KIEFzIEkgcG9zdGVkIGVhcmxpZXIg
aGVyZSwgd2hlbiBJIHNvbHZlZCAyNFosIEkgc29sdmVkIDJDIGZpcnN0LiBUaGVyZSwgMkMg
b3JiaXRzIGRvIGhhdmUgYSBjb21wbGljYXRlZCBvcmJpdCBwYXJpdHkgc2l0dWF0aW9uLiBC
dXQgYmVjYXVzZSB0aGVyZSBhcmUgbGVzcyBvcmJpdHMgYW5kIGxlc3MgcGllY2VzLCB0aGUg
cGFyaXR5IGNhbiBiZSBzb2x2ZWQgaW50dWl0aXZlbHkuIEFmdGVyIHNvbHZpbmcgMkMsIDND
IG9yYml0cyBhcmUgYWxsIGV2ZW5seSBwZXJtdXRlZC4gU28gbm8gZHJhbWEgZm9yIDNDIGlu
IDI0WiwgdW5saWtlIGluIDEyMFouIE1heWJlIGl0J3MgYmVjYXVzZSBhbiBvY3RhaGVkcm9u
IGhhcyA2IChldmVuIG51bWJlcikgcGFpcnMgb2YgZWRnZXMsIGJ1dCBhIGRvZGVjYWhlZHJv
biBoYXMgMTUgKG9kZCBudW1iZXIpIHBhaXJzIG9mIGVkZ2VzLg0KIA0KDQogM140IFogaXMg
ZXZlbiBjdXRlci4gSSBsb29rZWQgdXAgbXkgbm90ZSwgYW5kIEkgc29sdmVkIDNeNCBaIHdp
dGggdGhlIG9yZGVyIG9mIDRDLCAyQywgM0MuIEl0J3MgYmVjYXVzZSA0QyBwaWVjZXMgYXJl
IGluIGEgdW51c3VhbCBncm91cC4gQW5kIHRoZXJlIGFyZSBwYXJpdHkgc2l0dWF0aW9uIGlu
IGVhY2ggc3RlcC4gQnV0IHRoZXkgYXJlIG5vdCB2ZXJ5IGRpZmZpY3VsdC4gSXQncyBoYXJk
IHRvIGNvbXBhcmUgdGhhdCBwdXp6bGUgdG8gMjRaIGFuZCAxMjBaLg0KIA0KDQogQW5kcmV5
LCB5b3UgbWVudGlvbmVkIHRoYXQgeW91IHdvdWxkIGxpa2UgdG8gdHJ5IHZlcnRleCB0dXJu
aW5nIDI0LWNlbGwgYW5kIDE2LWNlbGwuIEFyZSB0aGV5IGp1c3QgZXF1aXZhbGVudCB0byBj
ZWxsLXR1cm5pbmcgMjQtY2VsbCBhbmQgOC1jZWxsIGR1ZSB0byBkdWFsaXR5Pw0KIA0KIE5h
bg0KIA0KIA0KIA0KDQo=
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64
SSBhbHdheXMgdGhpbmsgdGhlIHNvbHZpbmcgdGhlIG9yYml0IHBhcml0eSBpcyBsaWtlIGEg
TGlnaHRzIE91dCBnYW1lLiBUaGVzZSBkYXlzIEkgZGlkIHNvbWUgcmVzZWFyY2ggYW5kIGZv
dW5kIHNvbWUgTGlnaHRzIE91dCBwdXp6bGVzIG9uIEphYXAmIzM5O3MgcHV6emxlIHBhZ2Uu
IEZpcnN0IEkgZm91bmQgdGhpcyBPcmJpeCBwdXp6bGU6PGRpdj48YSByZWw9Im5vZm9sbG93
IiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0iaHR0cDovL3d3dy5qYWFwc2NoLm5ldC9wdXp6bGVz
L29yYml4Lmh0bSI+aHR0cDovL3d3dy5qYWFwc2NoLm5ldC9wdXp6bGVzL29yYml4Lmh0bTwv
YT48YnI+PC9kaXY+PGRpdj5JdCBoYXMgdGhlIHNoYXBlIG9mIGEgZG9kZWNhaGVkcm9uLiBU
aGUgdHlwZS0xIHZlcnNpb24gaXMgYSBzaW1wbGUgYW5kIG5lYXQgTGlnaHRzIE91dCBvbiBh
IGRvZGVjYWhlZHJvbi48L2Rpdj48ZGl2Pjxicj48L2Rpdj48ZGl2PkphYXAgbWFkZSBhIHZl
cnkgcG93ZXJmdWwgZ2FtZSwgTGlnaHRzIE91dCBvbiBhIEdyYXBoLjwvZGl2PjxkaXY+PGEg
cmVsPSJub2ZvbGxvdyIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9Imh0dHA6Ly93d3cuamFhcHNj
aC5uZXQvcHV6emxlcy9sb2dyYXBoLmh0bSI+aHR0cDovL3d3dy5qYWFwc2NoLm5ldC9wdXp6
bGVzL2xvZ3JhcGguaHRtPC9hPjxicj48L2Rpdj48ZGl2Pk9uZSBjYW4gZHJhdyBhbnkgZ3Jh
cGggYW5kIHRodXMgZGVmaW5lcyBhIExpZ2h0cyBPdXQgcHV6emxlLiBQbGF5ZXJzIGNhbiBh
bHNvIHNoYXJlIHRoZSBwdXp6bGUgZGVmaW5pdGlvbnMgYnkgdXBsb2FkaW5nIGFuZCBkb3du
bG9hZGluZy4gVGhlcmUgYXJlIGEgbG90IG9mIHByZWRlZmluZWQgcHV6emxlcyBhbHJlYWR5
LiBBbmQgb2YgY291cnNlIHRoZXJlIGlzbiYjMzk7dCBvbmUgdGhhdCYjMzk7cyBlcXVpdmFs
ZW50IHRvIDNDIG9mIDEyMCBjZWxsLiBUaGF0JiMzOTtzIHRvbyBjcmF6eS4uLiBCdXQgdGhl
cmUgaXMgYSBoeXBlcmN1YmUgaW4gdGhlIGZvbGRlciAmcXVvdDtMZXMmcXVvdDsuIEkgY291
bGQgc3BlbmQgYSBsb3Qgb2YgdGltZSBvbiB0aGlzIGdhbWUuPC9kaXY+PGRpdj48YnI+PC9k
aXY+PGRpdj5NZWxpbmRhIGFza2VkIG1lIHdoYXQmIzM5O3MgbmV4dCBmb3IgbWUuIEkgd2Fz
IHBsYXlpbmcgMTIwLWNlbGwgTWlycm9yIFogb24gbXkgY29tbXV0ZS4gVG9kYXkgSSBwbGF5
ZWQgQ2FuZHkgQ3J1c2guIEl0IHdhcyBub3QgZWFzeS4uLjwvZGl2PjxkaXY+PGJyPjwvZGl2
PjxkaXY+TmFuPC9kaXY+PGRpdiBjbGFzcz0ieWdyb3Vwcy1xdW90ZWQiPjxicj48YnI+LS0t
SW4gNERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwgJmx0O21lbGluZGFALi4uJmd0OyB3cm90
ZSA6PGJyPjxicj48ZGl2IGlkPSJ5Z3Jwcy15aXYtMTI3NjgzMTIyNSI+Ck5hbiBhbmQgQW5k
cmV5LDxicj4KPGJyPgpQZXJoYXBzIGEgM0Mtb25seSAyNC1jZWxsIHdpbGwgYmUgbW9yZSBk
aWZmaWN1bHQgd2l0aG91dCB0aGUgMkMKcGllY2VzIHRvIGhlbHAgZ2V0IHRoZSAzQyBwaWVj
ZXMgaW50byB0aGUgY29ycmVjdCBwYXJpdHk/IEkmIzM5O20Kd29uZGVyaW5nIGlmIHdlIGNh
biBmaW5kIGEgcHV6emxlIHRoYXQgcHJlc2VydmVzIHRoZSBtb3N0IGRpZmZpY3VsdApwYXJ0
IG9mIHRoZSAxMjBaIGJ1dCBpbiBhIG11Y2ggc21hbGxlciBwdXp6bGUuIEkmIzM5O20gcGFy
dGljdWxhcmx5CmludGVyZXN0ZWQgaW4gd2hldGhlciB0aGlzIGNhbiBiZSBkb25lIGluIDNE
LiBUaGUgbmF0dXJlIG9mIHRoZSBaCnB1enpsZXMgd291bGQgbWFrZSBpdCBoYXJkIHRvIGlt
YWdpbmUgaG93IHRvIHByb2R1Y2UgcGh5c2ljYWwKdmVyc2lvbnMsIGJ1dCBpdCB3b3VsZCBi
ZSBpZGVhbCB0byBmaW5kIHRoZSBsb3dlc3QgZGltZW5zaW9uIGluCndoaWNoIHRoaXMgcHV6
emxlIGNhbiBleGlzdC4gVGhvdWdodHM/PGJyPgo8YnI+CkFzIGFuIGFzaWRlLCBJJiMzOTt2
ZSBiZWVuIG1lYW5pbmcgdG8gYXNrIEFuZHJleSB3aGF0IGhlIHdvdWxkIHRoaW5rIG9mCnJl
bmFtaW5nIHRoZSBaIHB1enpsZXMgdG8gWC4gSSYjMzk7bSBwcm9wb3NpbmcgdGhpcyBiZWNh
dXNlIHRoZSBzaGFwZSBvZgp0aGUgbGV0dGVyICYjMzk7WCYjMzk7IGxvb2tzIGxpa2UgYSBt
YXAgb2YgaG93IGFsbCBwYXJ0cyBvZiBhIGNlbGwgdHJhbnNmb3JtCnRocm91Z2ggdGhlIGNl
bGwgY2VudGVyLCBlbmRpbmcgdXAgYXQgdGhlaXIgYW50aXBvZGVzLiBJIGtub3cgaXQmIzM5
O3MgYQpsaXR0bGUgbGF0ZSBpbiB0aGUgZ2FtZSBmb3IgdGhpcyBidXQgSSBrZWVwIHRoaW5r
aW5nIG9mIGl0IHNvIEkKdGhvdWdodCBJJiMzOTtkIHRocm93IGl0IG91dCB0aGVyZS4gTm8g
cHJlc3N1cmUsIHRob3VnaC4gSSBsaWtlICYjMzk7WiYjMzk7IGFzCndlbGwgYmVjYXVzZSBJ
IGhhdmUgYSBOaXNzYW4gMzUwWi4mbmJzcDsgOi0pPGJyPgo8YnI+Ci1NZWxpbmRhPGJyPgo8
YnI+PGRpdiBjbGFzcz0ieWdycHMteWl2LTEyNzY4MzEyMjVtb3otY2l0ZS1wcmVmaXgiPk9u
IDMvOC8yMDE0IDExOjI2IEFNLAo8YSByZWw9Im5vZm9sbG93IiBjbGFzcz0ieWdycHMteWl2
LTEyNzY4MzEyMjVtb3otdHh0LWxpbmstYWJicmV2aWF0ZWQiIHRhcmdldD0iX2JsYW5rIiBo
cmVmPSJtYWlsdG86bWFuYW5zZWxmQC4uLiI+bWFuYW5zZWxmQC4uLjwvYT4gd3JvdGU6PGJy
PjwvZGl2PjxibG9ja3F1b3RlPjxzcGFuIGNsYXNzPSIiPjxibG9ja3F1b3RlIHR5cGU9ImNp
dGUiPjxzdHlsZSB0eXBlPSJ0ZXh0L2NzcyI+I3lncnBzLXlpdi0xMjc2ODMxMjI1ICAKI3ln
cnBzLXlpdi0xMjc2ODMxMjI1IC55Z3Jwcy15aXYtMTI3NjgzMTIyNXlncnAtcGhvdG8tdGl0
bGV7CmNsZWFyOmJvdGg7Zm9udC1zaXplOnNtYWxsZXI7aGVpZ2h0OjE1cHg7b3ZlcmZsb3c6
aGlkZGVuO3RleHQtYWxpZ246Y2VudGVyO3dpZHRoOjc1cHg7fQojeWdycHMteWl2LTEyNzY4
MzEyMjUgZGl2LnlncnBzLXlpdi0xMjc2ODMxMjI1eWdycC1waG90b3sKYmFja2dyb3VuZC1w
b3NpdGlvbjpjZW50ZXI7YmFja2dyb3VuZC1yZXBlYXQ6bm8tcmVwZWF0O2JhY2tncm91bmQt
Y29sb3I6d2hpdGU7Ym9yZGVyOjFweCBzb2xpZCBibGFjaztoZWlnaHQ6NjJweDt3aWR0aDo2
MnB4O30KCiN5Z3Jwcy15aXYtMTI3NjgzMTIyNSBkaXYueWdycHMteWl2LTEyNzY4MzEyMjVw
aG90by10aXRsZSAKICAgICAgICAgYSwgCiN5Z3Jwcy15aXYtMTI3NjgzMTIyNSBkaXYueWdy
cHMteWl2LTEyNzY4MzEyMjVwaG90by10aXRsZSBhOmFjdGl2ZSwgCiN5Z3Jwcy15aXYtMTI3
NjgzMTIyNSBkaXYueWdycHMteWl2LTEyNzY4MzEyMjVwaG90by10aXRsZSBhOmhvdmVyLCAK
I3lncnBzLXlpdi0xMjc2ODMxMjI1IGRpdi55Z3Jwcy15aXYtMTI3NjgzMTIyNXBob3RvLXRp
dGxlIGE6dmlzaXRlZCB7CnRleHQtZGVjb3JhdGlvbjpub25lO30KCiN5Z3Jwcy15aXYtMTI3
NjgzMTIyNSBkaXYueWdycHMteWl2LTEyNzY4MzEyMjVhdHRhY2gtdGFibGUgZGl2LnlncnBz
LXlpdi0xMjc2ODMxMjI1YXR0YWNoLXJvdyB7CmNsZWFyOmJvdGg7fQoKI3lncnBzLXlpdi0x
Mjc2ODMxMjI1IGRpdi55Z3Jwcy15aXYtMTI3NjgzMTIyNWF0dGFjaC10YWJsZSBkaXYueWdy
cHMteWl2LTEyNzY4MzEyMjVhdHRhY2gtcm93IGRpdiB7CmZsb2F0OmxlZnQ7fQoKI3lncnBz
LXlpdi0xMjc2ODMxMjI1IHAgewpjbGVhcjpib3RoO3BhZGRpbmc6MTVweCAwIDNweCAwO292
ZXJmbG93OmhpZGRlbjt9CgojeWdycHMteWl2LTEyNzY4MzEyMjUgZGl2LnlncnBzLXlpdi0x
Mjc2ODMxMjI1eWdycC1maWxlIHsKd2lkdGg6MzBweDt9CiN5Z3Jwcy15aXYtMTI3NjgzMTIy
NSBkaXYueWdycHMteWl2LTEyNzY4MzEyMjVhdHRhY2gtdGFibGUgZGl2LnlncnBzLXlpdi0x
Mjc2ODMxMjI1YXR0YWNoLXJvdyBkaXYgZGl2IGEgewp0ZXh0LWRlY29yYXRpb246bm9uZTt9
CgojeWdycHMteWl2LTEyNzY4MzEyMjUgZGl2LnlncnBzLXlpdi0xMjc2ODMxMjI1YXR0YWNo
LXRhYmxlIGRpdi55Z3Jwcy15aXYtMTI3NjgzMTIyNWF0dGFjaC1yb3cgZGl2IGRpdiBzcGFu
IHsKZm9udC13ZWlnaHQ6bm9ybWFsO30KCiN5Z3Jwcy15aXYtMTI3NjgzMTIyNSBkaXYueWdy
cHMteWl2LTEyNzY4MzEyMjV5Z3JwLWZpbGUtdGl0bGUgewpmb250LXdlaWdodDpib2xkO30K
PC9zdHlsZT48c3R5bGUgdHlwZT0idGV4dC9jc3MiPiN5Z3Jwcy15aXYtMTI3NjgzMTIyNSAj
eWdycHMteWl2LTEyNzY4MzEyMjV5Z3JwLW1rcCB7CmJvcmRlcjoxcHggc29saWQgI2Q4ZDhk
ODtmb250LWZhbWlseTpBcmlhbDttYXJnaW46MTBweCAwO3BhZGRpbmc6MCAxMHB4O30KCiN5
Z3Jwcy15aXYtMTI3NjgzMTIyNSAjeWdycHMteWl2LTEyNzY4MzEyMjV5Z3JwLW1rcCBociB7
CmJvcmRlcjoxcHggc29saWQgI2Q4ZDhkODt9CgojeWdycHMteWl2LTEyNzY4MzEyMjUgI3ln
cnBzLXlpdi0xMjc2ODMxMjI1eWdycC1ta3AgI3lncnBzLXlpdi0xMjc2ODMxMjI1aGQgewpj
b2xvcjojNjI4YzJhO2ZvbnQtc2l6ZTo4NSU7Zm9udC13ZWlnaHQ6NzAwO2xpbmUtaGVpZ2h0
OjEyMiU7bWFyZ2luOjEwcHggMDt9CgojeWdycHMteWl2LTEyNzY4MzEyMjUgI3lncnBzLXlp
di0xMjc2ODMxMjI1eWdycC1ta3AgI3lncnBzLXlpdi0xMjc2ODMxMjI1YWRzIHsKbWFyZ2lu
LWJvdHRvbToxMHB4O30KCiN5Z3Jwcy15aXYtMTI3NjgzMTIyNSAjeWdycHMteWl2LTEyNzY4
MzEyMjV5Z3JwLW1rcCAueWdycHMteWl2LTEyNzY4MzEyMjVhZCB7CnBhZGRpbmc6MCAwO30K
CiN5Z3Jwcy15aXYtMTI3NjgzMTIyNSAjeWdycHMteWl2LTEyNzY4MzEyMjV5Z3JwLW1rcCAu
eWdycHMteWl2LTEyNzY4MzEyMjVhZCBwIHsKbWFyZ2luOjA7fQoKI3lncnBzLXlpdi0xMjc2
ODMxMjI1ICN5Z3Jwcy15aXYtMTI3NjgzMTIyNXlncnAtbWtwIC55Z3Jwcy15aXYtMTI3Njgz
MTIyNWFkIGEgewpjb2xvcjojMDAwMGZmO3RleHQtZGVjb3JhdGlvbjpub25lO308L3N0eWxl
PjxkaXY+TWVsaW5kYSBhbmQgQW5kcmV5LCBUaGFua3MuPC9kaXY+PGRpdj48YnI+PC9kaXY+
PGRpdj5BcyBJIHBvc3RlZCBlYXJsaWVyIGhlcmUsIHdoZW4gSSBzb2x2ZWQgMjRaLCBJIHNv
bHZlZCAyQwpmaXJzdC4gVGhlcmUsIDJDIG9yYml0cyBkbyBoYXZlIGEgY29tcGxpY2F0ZWQg
b3JiaXQgcGFyaXR5CnNpdHVhdGlvbi4gQnV0IGJlY2F1c2UgdGhlcmUgYXJlIGxlc3Mgb3Ji
aXRzIGFuZCBsZXNzIHBpZWNlcywKdGhlIHBhcml0eSBjYW4gYmUgc29sdmVkIGludHVpdGl2
ZWx5LiBBZnRlciBzb2x2aW5nIDJDLCAzQwpvcmJpdHMgYXJlIGFsbCBldmVubHkgcGVybXV0
ZWQuIFNvIG5vIGRyYW1hIGZvciAzQyBpbiAyNFosCnVubGlrZSBpbiAxMjBaLiBNYXliZSBp
dCYjMzk7cyBiZWNhdXNlIGFuIG9jdGFoZWRyb24gaGFzIDYgKGV2ZW4KbnVtYmVyKSBwYWly
cyBvZiBlZGdlcywgYnV0IGEgZG9kZWNhaGVkcm9uIGhhcyAxNSAob2RkIG51bWJlcikKcGFp
cnMgb2YgZWRnZXMuPC9kaXY+PGRpdj48YnI+PC9kaXY+PGRpdj4zXjQgWiBpcyBldmVuIGN1
dGVyLiBJIGxvb2tlZCB1cCBteSBub3RlLCBhbmQgSSBzb2x2ZWQgM140IFoKd2l0aCB0aGUg
b3JkZXIgb2YgNEMsIDJDLCAzQy4gSXQmIzM5O3MgYmVjYXVzZSA0QyBwaWVjZXMgYXJlIGlu
IGEKdW51c3VhbCBncm91cC4gQW5kIHRoZXJlIGFyZSBwYXJpdHkgc2l0dWF0aW9uIGluIGVh
Y2ggc3RlcC4gQnV0CnRoZXkgYXJlIG5vdCB2ZXJ5IGRpZmZpY3VsdC4gSXQmIzM5O3MgaGFy
ZCB0byBjb21wYXJlIHRoYXQgcHV6emxlIHRvCjI0WiBhbmQgMTIwWi48L2Rpdj48ZGl2Pjxi
cj48L2Rpdj48ZGl2PkFuZHJleSwgeW91IG1lbnRpb25lZCB0aGF0IHlvdSB3b3VsZCBsaWtl
IHRvIHRyeSB2ZXJ0ZXgKdHVybmluZyAyNC1jZWxsIGFuZCAxNi1jZWxsLiBBcmUgdGhleSBq
dXN0IGVxdWl2YWxlbnQgdG8KY2VsbC10dXJuaW5nIDI0LWNlbGwgYW5kIDgtY2VsbCBkdWUg
dG8gZHVhbGl0eT88L2Rpdj4KPGJyPjxkaXY+TmFuPC9kaXY+PGRpdiBzdHlsZT0iY29sb3I6
d2hpdGU7Y2xlYXI6Ym90aDsiPjwvZGl2PjwvYmxvY2txdW90ZT4KPGJyPgo8L3NwYW4+PC9i
bG9ja3F1b3RlPjwvZGl2PjwvZGl2Pg==
--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--
------=_NextPart_000_0012_01CF3D2F.AE492460
Content-Type: text/plain;
charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Very very interesting indeed! Thanks a lot for the link.
Ed
----- Original Message -----=20
From: mananself@gmail.com=20
To: 4D_Cubing@yahoogroups.com=20
Sent: Tuesday, March 11, 2014 6:09 AM
Subject: Re: [MC4D] RE: 120Z solved!!!
=20=20=20=20
I always think the solving the orbit parity is like a Lights Out game. Th=
ese days I did some research and found some Lights Out puzzles on Jaap's pu=
zzle page. First I found this Orbix puzzle:
http://www.jaapsch.net/puzzles/orbix.htm
It has the shape of a dodecahedron. The type-1 version is a simple and ne=
at Lights Out on a dodecahedron.
Jaap made a very powerful game, Lights Out on a Graph.
http://www.jaapsch.net/puzzles/lograph.htm
One can draw any graph and thus defines a Lights Out puzzle. Players can =
also share the puzzle definitions by uploading and downloading. There are a=
lot of predefined puzzles already. And of course there isn't one that's eq=
uivalent to 3C of 120 cell. That's too crazy... But there is a hypercube in=
the folder "Les". I could spend a lot of time on this game.
Melinda asked me what's next for me. I was playing 120-cell Mirror Z on m=
y commute. Today I played Candy Crush. It was not easy...
Nan
---In 4D_Cubing@yahoogroups.com,
Nan and Andrey,
Perhaps a 3C-only 24-cell will be more difficult without the 2C pieces to=
help get the 3C pieces into the correct parity? I'm wondering if we can fi=
nd a puzzle that preserves the most difficult part of the 120Z but in a muc=
h smaller puzzle. I'm particularly interested in whether this can be done i=
n 3D. The nature of the Z puzzles would make it hard to imagine how to prod=
uce physical versions, but it would be ideal to find the lowest dimension i=
n which this puzzle can exist. Thoughts?
As an aside, I've been meaning to ask Andrey what he would think of renam=
ing the Z puzzles to X. I'm proposing this because the shape of the letter =
'X' looks like a map of how all parts of a cell transform through the cell =
center, ending up at their antipodes. I know it's a little late in the game=
for this but I keep thinking of it so I thought I'd throw it out there. No=
pressure, though. I like 'Z' as well because I have a Nissan 350Z. :-)
-Melinda
On 3/8/2014 11:26 AM, mananself@... wrote:
Melinda and Andrey, Thanks.
As I posted earlier here, when I solved 24Z, I solved 2C first. There=
, 2C orbits do have a complicated orbit parity situation. But because there=
are less orbits and less pieces, the parity can be solved intuitively. Aft=
er solving 2C, 3C orbits are all evenly permuted. So no drama for 3C in 24Z=
, unlike in 120Z. Maybe it's because an octahedron has 6 (even number) pair=
s of edges, but a dodecahedron has 15 (odd number) pairs of edges.
3^4 Z is even cuter. I looked up my note, and I solved 3^4 Z with the=
order of 4C, 2C, 3C. It's because 4C pieces are in a unusual group. And th=
ere are parity situation in each step. But they are not very difficult. It'=
s hard to compare that puzzle to 24Z and 120Z.
Andrey, you mentioned that you would like to try vertex turning 24-ce=
ll and 16-cell. Are they just equivalent to cell-turning 24-cell and 8-cell=
due to duality?
Nan
=20=20
------=_NextPart_000_0012_01CF3D2F.AE492460
Content-Type: text/html;
charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
=EF=BB=BF
for the=20
link.
style=3D"BORDER-LEFT: #000000 2px solid; PADDING-LEFT: 5px; PADDING-RIGHT: =
0px; MARGIN-LEFT: 5px; MARGIN-RIGHT: 0px">
style=3D"FONT: 10pt arial; BACKGROUND: #e4e4e4; font-color: black">Fro=
m:=20
href=3D"mailto:mananself@gmail.com">mananself@gmail.com
I always think the solving the orbit parity is like a Lights Out game.=
=20
These days I did some research and found some Lights Out puzzles on Jaap'=
s=20
puzzle page. First I found this Orbix puzzle:
Melinda and Andrey, Thanks.
As I posted earlier here, when I solved 24Z, I solved 2C first.=
=20
There, 2C orbits do have a complicated orbit parity situation. But be=
cause=20
there are less orbits and less pieces, the parity can be solved=20
intuitively. After solving 2C, 3C orbits are all evenly permuted. So =
no=20
drama for 3C in 24Z, unlike in 120Z. Maybe it's because an octahedron=
has=20
6 (even number) pairs of edges, but a dodecahedron has 15 (odd number=
)=20
pairs of edges.
3^4 Z is even cuter. I looked up my note, and I solved 3^4 Z wit=
h the=20
order of 4C, 2C, 3C. It's because 4C pieces are in a unusual group. A=
nd=20
there are parity situation in each step. But they are not very diffic=
ult.=20
It's hard to compare that puzzle to 24Z and 120Z.
Andrey, you mentioned that you would like to try vertex turning=
=20
24-cell and 16-cell. Are they just equivalent to cell-turning 24-cell=
and=20
8-cell due to duality?
Nan
style=3D"COLOR: white">