Thread: "New puzzles"

From: <andreyastrelin@yahoo.com>
Date: 15 Nov 2013 13:44:14 -0800
Subject: New puzzles



--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64

SSd2ZSBzb2x2ZWQgezEwLDN9LCAzNkMsIEY6MDowOjEuIEl0IHdhcyBkaWZmaWN1bHQgLSBp
dCBoYXMgdG9vIG1hbnkgY29sb3JzLiBUb3RhbCBjb3VudCBpcyAyNTE4IHR3aXN0cy4NCiAN
Cg0KIEFuZHJleQ0K

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64

PHA+SSYjMzk7dmUgc29sdmVkIHsxMCwzfSwgMzZDLCBGOjA6MDoxLiBJdCB3YXMgZGlmZmlj
dWx0IC0gaXQgaGFzIHRvbyBtYW55IGNvbG9ycy4gVG90YWwgY291bnQgaXMgMjUxOCB0d2lz
dHMuPC9wPjxwPjxicj48L3A+PHA+QW5kcmV5PC9wPg==

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--




From: Melinda Green <melinda@superliminal.com>
Date: Fri, 15 Nov 2013 14:56:20 -0800
Subject: Re: [MC4D] New puzzles



--------------050503010609040409010007
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit

What about it is difficult? I would guess that more colors makes it more
tedious but not harder, similar to 3^4 versus 120-Cell.
-Melinda

On 11/15/2013 1:44 PM, andreyastrelin@yahoo.com wrote:
>
>
> I've solved {10,3}, 36C, F:0:0:1. It was difficult - it has too many
> colors. Total count is 2518 twists.
>
>
> Andrey
>
>
>
>


--------------050503010609040409010007
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: 7bit






What about it is difficult? I would guess that more colors makes it
more tedious but not harder, similar to 3^4 versus 120-Cell.

-Melinda



On 11/15/2013 1:44 PM,
andreyastrelin@yahoo.com wrote:





I've solved {10,3}, 36C, F:0:0:1. It was difficult - it has too
many colors. Total count is 2518 twists.





Andrey










--------------050503010609040409010007--




From: <andreyastrelin@yahoo.com>
Date: 15 Nov 2013 19:02:13 -0800
Subject: RE: Re: [MC4D] New puzzles



--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64

IE1heSBiZSwgYnV0IGluIDEyMC1DZWxsIHlvdSBoYXZlIHNvbWUgc2VhcmNoIHRvb2xzLiBJ
biAzNi1jb2xvciB0aWxlcyB0aGVyZSBpcyBtYW55IHNpbWlsYXIgY29sb3JzIHRoYXQgbWFr
ZXMgZGlmZmljdWx0IHNlYXJjaGluZyBvZiB0aGUgY29ycmVjdCB0aWxlIChldmVuIHdoZW4g
eW91IG1ha2Ugb25lIGZhY2Ugd2hpdGUgYW5kIGFsbCBvdGhlcnMgZGFyaykuIFBpZWNlcyBv
ZiBGMTowOjAgYXJlIHZlcnkgdGhpbiwgbW9zdCBvZiB0aGVtIGFyZSBjbG9zZSB0byBib3Vu
ZGFyeSwgc28geW91IGRvbid0IGV2ZW4gc2VlIHRoZW0gYWxsLiANCiBUb3BvbG9neSBvZiB7
MTAsM30sIDM2QyBpcyBub3QgdmVyeSBlYXN5IChhY3R1YWxseSwgSSBkb24ndCB1bmRlcnN0
YW5kIGl0IGF0IGFsbCkuIFdoZW4gSSBsb29rIGZvciB0aGUgdGlsZSwgSSdtIG5vdCBhbHdh
eXMgc3VyZSB0aGF0IG15IHNlYXJjaCBjb3ZlcnMgd2hvbGUgZnVuZGFtZW50YWwgYXJlYSwg
c28gSSBjYW4gZ28gb3ZlciB0aGUgc2FtZSBwYXJ0IGFnYWluIGFuZCBhZ2Fpbi4gQW5kIHRo
ZXJlIGFyZSBwcm9ibGVtcyB3aXRoIGZpbmRpbmcgYSB3YXkgZm9yIHRpbGVzIHRoYXQgZG9l
c24ndCBkaXN0dXJiIGFscmVhZHkgc29sdmVkIHBhcnRzLg0KIA0KDQogQW5kcmV5DQogDQoN
Ci0tLUluIDREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sIDxtZWxpbmRhQC4uLj4gd3JvdGU6
DQoNCiBXaGF0IGFib3V0IGl0IGlzIGRpZmZpY3VsdD8gSSB3b3VsZCBndWVzcyB0aGF0IG1v
cmUgY29sb3JzIG1ha2VzIGl0IG1vcmUgdGVkaW91cyBidXQgbm90IGhhcmRlciwgc2ltaWxh
ciB0byAzXjQgdmVyc3VzIDEyMC1DZWxsLg0KIC1NZWxpbmRhDQogDQogT24gMTEvMTUvMjAx
MyAxOjQ0IFBNLCBhbmRyZXlhc3RyZWxpbkAuLi4gbWFpbHRvOmFuZHJleWFzdHJlbGluQC4u
LiB3cm90ZToNCiANCiBJJ3ZlIHNvbHZlZCB7MTAsM30sIDM2QywgRjowOjA6MS4gSXQgd2Fz
IGRpZmZpY3VsdCAtIGl0IGhhcyB0b28gbWFueSBjb2xvcnMuIFRvdGFsIGNvdW50IGlzIDI1
MTggdHdpc3RzLg0KIA0KIA0KIEFuZHJleQ0KIA0KIA0KIA0KDQo=

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64

PHA+Jm5ic3A7TWF5IGJlLCBidXQgaW4gMTIwLUNlbGwgeW91IGhhdmUgc29tZSBzZWFyY2gg
dG9vbHMuIEluIDM2LWNvbG9yIHRpbGVzIHRoZXJlIGlzIG1hbnkgc2ltaWxhciBjb2xvcnMg
dGhhdCBtYWtlcyBkaWZmaWN1bHQgc2VhcmNoaW5nIG9mIHRoZSBjb3JyZWN0IHRpbGUgKGV2
ZW4gd2hlbiB5b3UgbWFrZSBvbmUgZmFjZSB3aGl0ZSBhbmQgYWxsIG90aGVycyBkYXJrKS4g
UGllY2VzIG9mIEYxOjA6MCBhcmUgdmVyeSB0aGluLCZuYnNwO21vc3Qgb2YgdGhlbSBhcmUg
Y2xvc2UgdG8gYm91bmRhcnksJm5ic3A7c28geW91IGRvbiYjMzk7dCBldmVuIHNlZSB0aGVt
IGFsbC4mbmJzcDs8L3A+PHA+VG9wb2xvZ3kgb2YgezEwLDN9LCAzNkMgaXMgbm90IHZlcnkg
ZWFzeSAoYWN0dWFsbHksIEkgZG9uJiMzOTt0IHVuZGVyc3RhbmQgaXQgYXQgYWxsKS4gV2hl
biBJIGxvb2sgZm9yIHRoZSB0aWxlLCBJJiMzOTttIG5vdCBhbHdheXMgc3VyZSB0aGF0IG15
IHNlYXJjaCBjb3ZlcnMgd2hvbGUgZnVuZGFtZW50YWwgYXJlYSwgc28gSSBjYW4gZ28gb3Zl
ciB0aGUgc2FtZSBwYXJ0IGFnYWluIGFuZCBhZ2Fpbi4mbmJzcDtBbmQmbmJzcDt0aGVyZSZu
YnNwO2FyZSZuYnNwO3Byb2JsZW1zIHdpdGggZmluZGluZyBhIHdheSBmb3ImbmJzcDt0aWxl
cyZuYnNwO3RoYXQgZG9lc24mIzM5O3QgZGlzdHVyYiBhbHJlYWR5IHNvbHZlZCBwYXJ0cy48
L3A+PHA+PGJyPjwvcD48cD5BbmRyZXk8L3A+IDxkaXYgY2xhc3M9Inlncm91cHMtcXVvdGVk
IiBzdHlsZT0iZGlzcGxheTpub25lOyI+PGJyPjxicj4tLS1JbiA0RF9DdWJpbmdAeWFob29n
cm91cHMuY29tLCAmbHQ7bWVsaW5kYUAuLi4mZ3Q7IHdyb3RlOjxicj48YnI+PGRpdiBpZD0i
eWdycHMteWl2LTEzMjU4ODk3MDYiPgogIAogICAgCiAgCiAgCiAgICBXaGF0IGFib3V0IGl0
IGlzIGRpZmZpY3VsdD8gSSB3b3VsZCBndWVzcyB0aGF0IG1vcmUgY29sb3JzIG1ha2VzIGl0
CiAgICBtb3JlIHRlZGlvdXMgYnV0IG5vdCBoYXJkZXIsIHNpbWlsYXIgdG8gM140IHZlcnN1
cyAxMjAtQ2VsbC48YnI+CiAgICAtTWVsaW5kYTxicj4KICAgIDxicj4KICAgIDxkaXYgY2xh
c3M9InlncnBzLXlpdi0xMzI1ODg5NzA2bW96LWNpdGUtcHJlZml4Ij5PbiAxMS8xNS8yMDEz
IDE6NDQgUE0sCiAgICAgIDxhIHJlbD0ibm9mb2xsb3ciIGNsYXNzPSJ5Z3Jwcy15aXYtMTMy
NTg4OTcwNm1vei10eHQtbGluay1hYmJyZXZpYXRlZCIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9
Im1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4iPmFuZHJleWFzdHJlbGluQC4uLjwvYT4gd3Jv
dGU6PGJyPgogICAgPC9kaXY+CiAgICA8YmxvY2txdW90ZT48c3Bhbj4gPGJsb2NrcXVvdGUg
dHlwZT0iY2l0ZSI+CiAgICAgIDxzdHlsZSB0eXBlPSJ0ZXh0L2NzcyI+CjwhLS0KCiN5Z3Jw
cy15aXYtMTMyNTg4OTcwNiAgCiN5Z3Jwcy15aXYtMTMyNTg4OTcwNiAueWdycHMteWl2LTEz
MjU4ODk3MDZ5Z3JwLXBob3RvLXRpdGxlewpjbGVhcjpib3RoO2ZvbnQtc2l6ZTpzbWFsbGVy
O2hlaWdodDoxNXB4O292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOmNlbnRlcjt3aWR0aDo3
NXB4O30KI3lncnBzLXlpdi0xMzI1ODg5NzA2IGRpdi55Z3Jwcy15aXYtMTMyNTg4OTcwNnln
cnAtcGhvdG97CmJhY2tncm91bmQtcG9zaXRpb246Y2VudGVyO2JhY2tncm91bmQtcmVwZWF0
Om5vLXJlcGVhdDtiYWNrZ3JvdW5kLWNvbG9yOndoaXRlO2JvcmRlcjoxcHggc29saWQgYmxh
Y2s7aGVpZ2h0OjYycHg7d2lkdGg6NjJweDt9CgojeWdycHMteWl2LTEzMjU4ODk3MDYgZGl2
LnlncnBzLXlpdi0xMzI1ODg5NzA2cGhvdG8tdGl0bGUgCiAgICAgICAgIGEsIAojeWdycHMt
eWl2LTEzMjU4ODk3MDYgZGl2LnlncnBzLXlpdi0xMzI1ODg5NzA2cGhvdG8tdGl0bGUgYTph
Y3RpdmUsIAojeWdycHMteWl2LTEzMjU4ODk3MDYgZGl2LnlncnBzLXlpdi0xMzI1ODg5NzA2
cGhvdG8tdGl0bGUgYTpob3ZlciwgCiN5Z3Jwcy15aXYtMTMyNTg4OTcwNiBkaXYueWdycHMt
eWl2LTEzMjU4ODk3MDZwaG90by10aXRsZSBhOnZpc2l0ZWQgewp0ZXh0LWRlY29yYXRpb246
bm9uZTt9CgojeWdycHMteWl2LTEzMjU4ODk3MDYgZGl2LnlncnBzLXlpdi0xMzI1ODg5NzA2
YXR0YWNoLXRhYmxlIGRpdi55Z3Jwcy15aXYtMTMyNTg4OTcwNmF0dGFjaC1yb3cgewpjbGVh
cjpib3RoO30KCiN5Z3Jwcy15aXYtMTMyNTg4OTcwNiBkaXYueWdycHMteWl2LTEzMjU4ODk3
MDZhdHRhY2gtdGFibGUgZGl2LnlncnBzLXlpdi0xMzI1ODg5NzA2YXR0YWNoLXJvdyBkaXYg
ewpmbG9hdDpsZWZ0O30KCiN5Z3Jwcy15aXYtMTMyNTg4OTcwNiBwIHsKY2xlYXI6Ym90aDtw
YWRkaW5nOjE1cHggMCAzcHggMDtvdmVyZmxvdzpoaWRkZW47fQoKI3lncnBzLXlpdi0xMzI1
ODg5NzA2IGRpdi55Z3Jwcy15aXYtMTMyNTg4OTcwNnlncnAtZmlsZSB7CndpZHRoOjMwcHg7
fQojeWdycHMteWl2LTEzMjU4ODk3MDYgZGl2LnlncnBzLXlpdi0xMzI1ODg5NzA2YXR0YWNo
LXRhYmxlIGRpdi55Z3Jwcy15aXYtMTMyNTg4OTcwNmF0dGFjaC1yb3cgZGl2IGRpdiBhIHsK
dGV4dC1kZWNvcmF0aW9uOm5vbmU7fQoKI3lncnBzLXlpdi0xMzI1ODg5NzA2IGRpdi55Z3Jw
cy15aXYtMTMyNTg4OTcwNmF0dGFjaC10YWJsZSBkaXYueWdycHMteWl2LTEzMjU4ODk3MDZh
dHRhY2gtcm93IGRpdiBkaXYgc3BhbiB7CmZvbnQtd2VpZ2h0Om5vcm1hbDt9CgojeWdycHMt
eWl2LTEzMjU4ODk3MDYgZGl2LnlncnBzLXlpdi0xMzI1ODg5NzA2eWdycC1maWxlLXRpdGxl
IHsKZm9udC13ZWlnaHQ6Ym9sZDt9Ci0tPjwvc3R5bGU+CiAgICAgIDxzdHlsZSB0eXBlPSJ0
ZXh0L2NzcyI+CjwhLS0KI3lncnBzLXlpdi0xMzI1ODg5NzA2ICN5Z3Jwcy15aXYtMTMyNTg4
OTcwNnlncnAtbWtwIHsKYm9yZGVyOjFweCBzb2xpZCAjZDhkOGQ4O2ZvbnQtZmFtaWx5OkFy
aWFsO21hcmdpbjoxMHB4IDA7cGFkZGluZzowIDEwcHg7fQoKI3lncnBzLXlpdi0xMzI1ODg5
NzA2ICN5Z3Jwcy15aXYtMTMyNTg4OTcwNnlncnAtbWtwIGhyIHsKYm9yZGVyOjFweCBzb2xp
ZCAjZDhkOGQ4O30KCiN5Z3Jwcy15aXYtMTMyNTg4OTcwNiAjeWdycHMteWl2LTEzMjU4ODk3
MDZ5Z3JwLW1rcCAjeWdycHMteWl2LTEzMjU4ODk3MDZoZCB7CmNvbG9yOiM2MjhjMmE7Zm9u
dC1zaXplOjg1JTtmb250LXdlaWdodDo3MDA7bGluZS1oZWlnaHQ6MTIyJTttYXJnaW46MTBw
eCAwO30KCiN5Z3Jwcy15aXYtMTMyNTg4OTcwNiAjeWdycHMteWl2LTEzMjU4ODk3MDZ5Z3Jw
LW1rcCAjeWdycHMteWl2LTEzMjU4ODk3MDZhZHMgewptYXJnaW4tYm90dG9tOjEwcHg7fQoK
I3lncnBzLXlpdi0xMzI1ODg5NzA2ICN5Z3Jwcy15aXYtMTMyNTg4OTcwNnlncnAtbWtwIC55
Z3Jwcy15aXYtMTMyNTg4OTcwNmFkIHsKcGFkZGluZzowIDA7fQoKI3lncnBzLXlpdi0xMzI1
ODg5NzA2ICN5Z3Jwcy15aXYtMTMyNTg4OTcwNnlncnAtbWtwIC55Z3Jwcy15aXYtMTMyNTg4
OTcwNmFkIHAgewptYXJnaW46MDt9CgojeWdycHMteWl2LTEzMjU4ODk3MDYgI3lncnBzLXlp
di0xMzI1ODg5NzA2eWdycC1ta3AgLnlncnBzLXlpdi0xMzI1ODg5NzA2YWQgYSB7CmNvbG9y
OiMwMDAwZmY7dGV4dC1kZWNvcmF0aW9uOm5vbmU7fQotLT4KPC9zdHlsZT4KICAgICAgPHA+
SSYjMzk7dmUgc29sdmVkIHsxMCwzfSwgMzZDLCBGOjA6MDoxLiBJdCB3YXMgZGlmZmljdWx0
IC0gaXQgaGFzIHRvbwogICAgICAgIG1hbnkgY29sb3JzLiBUb3RhbCBjb3VudCBpcyAyNTE4
IHR3aXN0cy48L3A+CiAgICAgIDxwPjxicj4KICAgICAgPC9wPgogICAgICA8cD5BbmRyZXk8
L3A+CiAgICAgIAogICAgICA8ZGl2IHN0eWxlPSJjb2xvcjp3aGl0ZTtjbGVhcjpib3RoOyI+
PC9kaXY+CiAgICA8L2Jsb2NrcXVvdGU+CiAgICA8YnI+CiAgCjwvc3Bhbj48L2Jsb2NrcXVv
dGU+CjwvZGl2PjwvZGl2Pg==

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--




From: "Eduard Baumann" <ed.baumann@bluewin.ch>
Date: Sat, 16 Nov 2013 09:47:00 +0100
Subject: Re: Re: [MC4D] New puzzles



------=_NextPart_000_0006_01CEE2B0.CC34D8E0
Content-Type: text/plain;
charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

I'am playing with MT hyp {10,3],18C F0:0:1(not F1:0:0). 300 twists for 4 of=
the 18 colors so far. I don't care for the number of twists and use 3 cycl=
es all the way even early in order to not disturb anything. I also complete=
colors before starting a new one. So this puzzle is not so hard to solve b=
ut funny.

I will complete wiki for the 60 new puzzles and effectively aim for the new=
50%.

Ed

----- Original Message -----=20
From: andreyastrelin@yahoo.com=20
To: 4D_Cubing@yahoogroups.com=20
Sent: Saturday, November 16, 2013 4:02 AM
Subject: RE: Re: [MC4D] New puzzles


=20=20=20=20

May be, but in 120-Cell you have some search tools. In 36-color tiles th=
ere is many similar colors that makes difficult searching of the correct ti=
le (even when you make one face white and all others dark). Pieces of F1:0:=
0 are very thin, most of them are close to boundary, so you don't even see =
them all.=20

Topology of {10,3}, 36C is not very easy (actually, I don't understand it=
at all). When I look for the tile, I'm not always sure that my search cove=
rs whole fundamental area, so I can go over the same part again and again. =
And there are problems with finding a way for tiles that doesn't disturb al=
ready solved parts.




Andrey



---In 4D_Cubing@yahoogroups.com, wrote:


What about it is difficult? I would guess that more colors makes it more =
tedious but not harder, similar to 3^4 versus 120-Cell.
-Melinda


On 11/15/2013 1:44 PM, andreyastrelin@... wrote:

I've solved {10,3}, 36C, F:0:0:1. It was difficult - it has too many =
colors. Total count is 2518 twists.




Andrey




=20=20
------=_NextPart_000_0006_01CEE2B0.CC34D8E0
Content-Type: text/html;
charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

=EF=BB=BF




I'am playing with MT hyp {10,3],18C F0:0:1=
(not=20
F1:0:0). 300 twists for 4 of the 18 colors so far. I don't care for the num=
ber=20
of twists and use 3 cycles all the way even early in order to not disturb=20
anything. I also complete colors before starting a new one. So this puzzle =
is=20
not so hard to solve but funny.

 

I will complete wiki for the 60 new puzzle=
s and=20
effectively aim for the new 50%.

 

Ed

 

style=3D"BORDER-LEFT: #000000 2px solid; PADDING-LEFT: 5px; PADDING-RIGHT: =
0px; MARGIN-LEFT: 5px; MARGIN-RIGHT: 0px">
----- Original Message -----

style=3D"FONT: 10pt arial; BACKGROUND: #e4e4e4; font-color: black">Fro=
m:
=20
href=3D"mailto:andreyastrelin@yahoo.com">andreyastrelin@yahoo.com IV>
To: ps.com=20
href=3D"mailto:4D_Cubing@yahoogroups.com">4D_Cubing@yahoogroups.com
<=
/DIV>
Sent: Saturday, November 16, 2013 =
4:02=20
AM

Subject: RE: Re: [MC4D] New puzzle=
s


 =20


 May be, but in 120-Cell you have some search tools. In 36-color =
tiles=20
there is many similar colors that makes difficult searching of the correc=
t=20
tile (even when you make one face white and all others dark). Pieces of F=
1:0:0=20
are very thin, most of them are close to boundary, so you don't=
even=20
see them all. 


Topology of {10,3}, 36C is not very easy (actually, I don't understand=
it=20
at all). When I look for the tile, I'm not always sure that my search cov=
ers=20
whole fundamental area, so I can go over the same part again and=20
again. And there are problems with finding a way=20
for tiles that doesn't disturb already solved parts.




Andrey




---In 4D_Cubing@yahoogroups.com,=20
<melinda@...> wrote:


What about it is difficult? I would guess =
that=20
more colors makes it more tedious but not harder, similar to 3^4 versus=20
120-Cell.
-Melinda


On 11/15/2013 1:44 PM, <=
A=20
class=3Dygrps-yiv-1325889706moz-txt-link-abbreviated=20
href=3D"mailto:andreyastrelin@..." rel=3Dnofollow=20
target=3D_blank>andreyastrelin@... wrote:



I've solved {10,3}, 36C, F:0:0:1. It was difficult - it has too ma=
ny=20
colors. Total count is 2518 twists.




Andrey


style=3D"COLOR: white">

<=
/DIV>



------=_NextPart_000_0006_01CEE2B0.CC34D8E0--




From: <andreyastrelin@yahoo.com>
Date: 16 Nov 2013 15:29:01 -0800
Subject: RE: Re: Re: [MC4D] New puzzles



--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64

ezEwLDN9IDE4QyBGMC42NzowOjEgc29sdmVkLiAyNjgwIHR3aXN0cy4NCiBJdCB3YXMgZWFz
eSBlbm91Z2ggKGlmIHlvdSBrbm93IGhvdyB0byBoYW5kbGUgcGllY2VzIHdpdGggd3Jvbmcg
b3JpZW50YXRpb24pLg0KIA0KDQogQW5kcmV5DQogDQoNCi0tLUluIDREX0N1YmluZ0B5YWhv
b2dyb3Vwcy5jb20sIDxlZC5iYXVtYW5uQC4uLj4gd3JvdGU6DQoNCiDvu78gSSdhbSBwbGF5
aW5nIHdpdGggTVQgaHlwIHsxMCwzXSwxOEMgRjA6MDoxKG5vdCBGMTowOjApLiAzMDAgdHdp
c3RzIGZvciA0IG9mIHRoZSAxOCBjb2xvcnMgc28gZmFyLiBJIGRvbid0IGNhcmUgZm9yIHRo
ZSBudW1iZXIgb2YgdHdpc3RzIGFuZCB1c2UgMyBjeWNsZXMgYWxsIHRoZSB3YXkgZXZlbiBl
YXJseSBpbiBvcmRlciB0byBub3QgZGlzdHVyYiBhbnl0aGluZy4gSSBhbHNvIGNvbXBsZXRl
IGNvbG9ycyBiZWZvcmUgc3RhcnRpbmcgYSBuZXcgb25lLiBTbyB0aGlzIHB1enpsZSBpcyBu
b3Qgc28gaGFyZCB0byBzb2x2ZSBidXQgZnVubnkuDQogIA0KIEkgd2lsbCBjb21wbGV0ZSB3
aWtpIGZvciB0aGUgNjAgbmV3IHB1enpsZXMgYW5kIGVmZmVjdGl2ZWx5IGFpbSBmb3IgdGhl
IG5ldyA1MCUuDQogIA0KIEVkDQogIA0KIC0tLS0tIE9yaWdpbmFsIE1lc3NhZ2UgLS0tLS0g
DQogRnJvbTogYW5kcmV5YXN0cmVsaW5ALi4uIG1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4g
DQogVG86IDREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20gbWFpbHRvOjREX0N1YmluZ0B5YWhv
b2dyb3Vwcy5jb20gDQogU2VudDogU2F0dXJkYXksIE5vdmVtYmVyIDE2LCAyMDEzIDQ6MDIg
QU0NCiBTdWJqZWN0OiBSRTogUmU6IFtNQzREXSBOZXcgcHV6emxlcw0KIA0KDQogICBNYXkg
YmUsIGJ1dCBpbiAxMjAtQ2VsbCB5b3UgaGF2ZSBzb21lIHNlYXJjaCB0b29scy4gSW4gMzYt
Y29sb3IgdGlsZXMgdGhlcmUgaXMgbWFueSBzaW1pbGFyIGNvbG9ycyB0aGF0IG1ha2VzIGRp
ZmZpY3VsdCBzZWFyY2hpbmcgb2YgdGhlIGNvcnJlY3QgdGlsZSAoZXZlbiB3aGVuIHlvdSBt
YWtlIG9uZSBmYWNlIHdoaXRlIGFuZCBhbGwgb3RoZXJzIGRhcmspLiBQaWVjZXMgb2YgRjE6
MDowIGFyZSB2ZXJ5IHRoaW4sIG1vc3Qgb2YgdGhlbSBhcmUgY2xvc2UgdG8gYm91bmRhcnks
IHNvIHlvdSBkb24ndCBldmVuIHNlZSB0aGVtIGFsbC4gDQogVG9wb2xvZ3kgb2YgezEwLDN9
LCAzNkMgaXMgbm90IHZlcnkgZWFzeSAoYWN0dWFsbHksIEkgZG9uJ3QgdW5kZXJzdGFuZCBp
dCBhdCBhbGwpLiBXaGVuIEkgbG9vayBmb3IgdGhlIHRpbGUsIEknbSBub3QgYWx3YXlzIHN1
cmUgdGhhdCBteSBzZWFyY2ggY292ZXJzIHdob2xlIGZ1bmRhbWVudGFsIGFyZWEsIHNvIEkg
Y2FuIGdvIG92ZXIgdGhlIHNhbWUgcGFydCBhZ2FpbiBhbmQgYWdhaW4uIEFuZCB0aGVyZSBh
cmUgcHJvYmxlbXMgd2l0aCBmaW5kaW5nIGEgd2F5IGZvciB0aWxlcyB0aGF0IGRvZXNuJ3Qg
ZGlzdHVyYiBhbHJlYWR5IHNvbHZlZCBwYXJ0cy4NCiANCg0KIEFuZHJleQ0KIA0KDQotLS1J
biA0RF9DdWJpbmdAeWFob29ncm91cHMuY29tLCA8bWVsaW5kYUAuLi4+IHdyb3RlOg0KDQog
V2hhdCBhYm91dCBpdCBpcyBkaWZmaWN1bHQ/IEkgd291bGQgZ3Vlc3MgdGhhdCBtb3JlIGNv
bG9ycyBtYWtlcyBpdCBtb3JlIHRlZGlvdXMgYnV0IG5vdCBoYXJkZXIsIHNpbWlsYXIgdG8g
M140IHZlcnN1cyAxMjAtQ2VsbC4NCi1NZWxpbmRhDQoNCiBPbiAxMS8xNS8yMDEzIDE6NDQg
UE0sIGFuZHJleWFzdHJlbGluQC4uLiBtYWlsdG86YW5kcmV5YXN0cmVsaW5ALi4uIHdyb3Rl
Og0KDQogSSd2ZSBzb2x2ZWQgezEwLDN9LCAzNkMsIEY6MDowOjEuIEl0IHdhcyBkaWZmaWN1
bHQgLSBpdCBoYXMgdG9vIG1hbnkgY29sb3JzLiBUb3RhbCBjb3VudCBpcyAyNTE4IHR3aXN0
cy4NCiANCg0KIEFuZHJleQ0KIA0KDQoNCg0KIA0KIA0KDQo=

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64

PHA+ezEwLDN9IDE4QyBGMC42NzowOjEgc29sdmVkLiZuYnNwOzI2ODAgdHdpc3RzLjwvcD48
cD5JdCB3YXMgZWFzeSBlbm91Z2ggKGlmIHlvdSBrbm93IGhvdyB0byBoYW5kbGUgcGllY2Vz
IHdpdGggd3Jvbmcgb3JpZW50YXRpb24pLjwvcD48cD48YnI+PC9wPjxwPkFuZHJleTwvcD4g
PGRpdiBjbGFzcz0ieWdyb3Vwcy1xdW90ZWQiIHN0eWxlPSJkaXNwbGF5Om5vbmU7Ij48YnI+
PGJyPi0tLUluIDREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sICZsdDtlZC5iYXVtYW5uQC4u
LiZndDsgd3JvdGU6PGJyPjxicj48ZGl2IGlkPSJ5Z3Jwcy15aXYtMTM3NjExNTIxOSI+77u/
CgogCiAKIAo8ZGl2Pjxmb250IGZhY2U9IkFyaWFsIiBzaXplPSIyIj5JJiMzOTthbSBwbGF5
aW5nIHdpdGggTVQgaHlwIHsxMCwzXSwxOEMgRjA6MDoxKG5vdCAKRjE6MDowKS4gMzAwIHR3
aXN0cyBmb3IgNCBvZiB0aGUgMTggY29sb3JzIHNvIGZhci4gSSBkb24mIzM5O3QgY2FyZSBm
b3IgdGhlIG51bWJlciAKb2YgdHdpc3RzIGFuZCB1c2UgMyBjeWNsZXMgYWxsIHRoZSB3YXkg
ZXZlbiBlYXJseSBpbiBvcmRlciB0byBub3QgZGlzdHVyYiAKYW55dGhpbmcuIEkgYWxzbyBj
b21wbGV0ZSBjb2xvcnMgYmVmb3JlIHN0YXJ0aW5nIGEgbmV3IG9uZS4gU28gdGhpcyBwdXp6
bGUgaXMgCm5vdCBzbyBoYXJkIHRvIHNvbHZlIGJ1dCBmdW5ueS48L2ZvbnQ+PC9kaXY+Cjxk
aXY+PGZvbnQgZmFjZT0iQXJpYWwiIHNpemU9IjIiPjwvZm9udD4mbmJzcDs8L2Rpdj4KPGRp
dj48Zm9udCBmYWNlPSJBcmlhbCIgc2l6ZT0iMiI+SSB3aWxsIGNvbXBsZXRlIHdpa2kgZm9y
IHRoZSA2MCBuZXcgcHV6emxlcyBhbmQgCmVmZmVjdGl2ZWx5IGFpbSBmb3IgdGhlIG5ldyA1
MCUuPC9mb250PjwvZGl2Pgo8ZGl2Pjxmb250IGZhY2U9IkFyaWFsIiBzaXplPSIyIj48L2Zv
bnQ+Jm5ic3A7PC9kaXY+CjxkaXY+PGZvbnQgZmFjZT0iQXJpYWwiIHNpemU9IjIiPkVkPC9m
b250PjwvZGl2Pgo8ZGl2Pjxmb250IGZhY2U9IkFyaWFsIiBzaXplPSIyIj48L2ZvbnQ+Jm5i
c3A7PC9kaXY+CjxibG9ja3F1b3RlPjxzcGFuPiA8YmxvY2txdW90ZSBzdHlsZT0icGFkZGlu
Zy1yaWdodDowcHg7cGFkZGluZy1sZWZ0OjVweDttYXJnaW4tcmlnaHQ6MHB4O21hcmdpbi1s
ZWZ0OjVweDtib3JkZXItbGVmdC1jb2xvcjpyZ2IoMCwgMCwgMCk7Ym9yZGVyLWxlZnQtd2lk
dGg6MnB4O2JvcmRlci1sZWZ0LXN0eWxlOnNvbGlkOyI+CiAgPGRpdiBzdHlsZT0iZm9udDox
MHB0L25vcm1hbCBhcmlhbDtmb250LXNpemUtYWRqdXN0Om5vbmU7Zm9udC1zdHJldGNoOm5v
cm1hbDsiPi0tLS0tIE9yaWdpbmFsIE1lc3NhZ2UgLS0tLS0gPC9kaXY+CiAgPGRpdiBzdHls
ZT0iYmFja2dyb3VuZDpyZ2IoMjI4LCAyMjgsIDIyOCk7Zm9udDoxMHB0L25vcm1hbCBhcmlh
bDtmb250LXNpemUtYWRqdXN0Om5vbmU7Zm9udC1zdHJldGNoOm5vcm1hbDsiPjxiPkZyb206
PC9iPiAKICA8YSByZWw9Im5vZm9sbG93IiB0aXRsZT0iYW5kcmV5YXN0cmVsaW5ALi4uIiB0
YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOmFuZHJleWFzdHJlbGluQC4uLiI+YW5kcmV5
YXN0cmVsaW5ALi4uPC9hPiA8L2Rpdj4KICA8ZGl2IHN0eWxlPSJmb250OjEwcHQvbm9ybWFs
IGFyaWFsO2ZvbnQtc2l6ZS1hZGp1c3Q6bm9uZTtmb250LXN0cmV0Y2g6bm9ybWFsOyI+PGI+
VG86PC9iPiA8YSByZWw9Im5vZm9sbG93IiB0aXRsZT0iNERfQ3ViaW5nQHlhaG9vZ3JvdXBz
LmNvbSIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9Im1haWx0bzo0RF9DdWJpbmdAeWFob29ncm91
cHMuY29tIj40RF9DdWJpbmdAeWFob29ncm91cHMuY29tPC9hPiA8L2Rpdj4KICA8ZGl2IHN0
eWxlPSJmb250OjEwcHQvbm9ybWFsIGFyaWFsO2ZvbnQtc2l6ZS1hZGp1c3Q6bm9uZTtmb250
LXN0cmV0Y2g6bm9ybWFsOyI+PGI+U2VudDo8L2I+IFNhdHVyZGF5LCBOb3ZlbWJlciAxNiwg
MjAxMyA0OjAyIAogIEFNPC9kaXY+CiAgPGRpdiBzdHlsZT0iZm9udDoxMHB0L25vcm1hbCBh
cmlhbDtmb250LXNpemUtYWRqdXN0Om5vbmU7Zm9udC1zdHJldGNoOm5vcm1hbDsiPjxiPlN1
YmplY3Q6PC9iPiBSRTogUmU6IFtNQzREXSBOZXcgcHV6emxlczwvZGl2PgogIDxkaXY+PGJy
PjwvZGl2PjxzcGFuIHN0eWxlPSJkaXNwbGF5Om5vbmU7Ij4mbmJzcDs8L3NwYW4+IAogIDxk
aXYgaWQ9InlncnBzLXlpdi0xMzc2MTE1MjE5eWdycC10ZXh0Ij4KICA8cD4KICA8cD4mbmJz
cDtNYXkgYmUsIGJ1dCBpbiAxMjAtQ2VsbCB5b3UgaGF2ZSBzb21lIHNlYXJjaCB0b29scy4g
SW4gMzYtY29sb3IgdGlsZXMgCiAgdGhlcmUgaXMgbWFueSBzaW1pbGFyIGNvbG9ycyB0aGF0
IG1ha2VzIGRpZmZpY3VsdCBzZWFyY2hpbmcgb2YgdGhlIGNvcnJlY3QgCiAgdGlsZSAoZXZl
biB3aGVuIHlvdSBtYWtlIG9uZSBmYWNlIHdoaXRlIGFuZCBhbGwgb3RoZXJzIGRhcmspLiBQ
aWVjZXMgb2YgRjE6MDowIAogIGFyZSB2ZXJ5IHRoaW4sJm5ic3A7bW9zdCBvZiB0aGVtIGFy
ZSBjbG9zZSB0byBib3VuZGFyeSwmbmJzcDtzbyB5b3UgZG9uJiMzOTt0IGV2ZW4gCiAgc2Vl
IHRoZW0gYWxsLiZuYnNwOzwvcD4KICA8cD5Ub3BvbG9neSBvZiB7MTAsM30sIDM2QyBpcyBu
b3QgdmVyeSBlYXN5IChhY3R1YWxseSwgSSBkb24mIzM5O3QgdW5kZXJzdGFuZCBpdCAKICBh
dCBhbGwpLiBXaGVuIEkgbG9vayBmb3IgdGhlIHRpbGUsIEkmIzM5O20gbm90IGFsd2F5cyBz
dXJlIHRoYXQgbXkgc2VhcmNoIGNvdmVycyAKICB3aG9sZSBmdW5kYW1lbnRhbCBhcmVhLCBz
byBJIGNhbiBnbyBvdmVyIHRoZSBzYW1lIHBhcnQgYWdhaW4gYW5kIAogIGFnYWluLiZuYnNw
O0FuZCZuYnNwO3RoZXJlJm5ic3A7YXJlJm5ic3A7cHJvYmxlbXMgd2l0aCBmaW5kaW5nIGEg
d2F5IAogIGZvciZuYnNwO3RpbGVzJm5ic3A7dGhhdCBkb2VzbiYjMzk7dCBkaXN0dXJiIGFs
cmVhZHkgc29sdmVkIHBhcnRzLjwvcD4KICA8cD48YnI+PC9wPgogIDxwPkFuZHJleTwvcD4K
ICA8ZGl2IGNsYXNzPSJ5Z3Jwcy15aXYtMTM3NjExNTIxOXlncm91cHMtcXVvdGVkIj48YnI+
PGJyPi0tLUluIDREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sIAogICZsdDttZWxpbmRhQC4u
LiZndDsgd3JvdGU6PGJyPjxicj4KICA8ZGl2IGlkPSJ5Z3Jwcy15aXYtMTM3NjExNTIxOXln
cnBzLXlpdi0xMzI1ODg5NzA2Ij5XaGF0IGFib3V0IGl0IGlzIGRpZmZpY3VsdD8gSSB3b3Vs
ZCBndWVzcyB0aGF0IAogIG1vcmUgY29sb3JzIG1ha2VzIGl0IG1vcmUgdGVkaW91cyBidXQg
bm90IGhhcmRlciwgc2ltaWxhciB0byAzXjQgdmVyc3VzIAogIDEyMC1DZWxsLjxicj4tTWVs
aW5kYTxicj48YnI+CiAgPGRpdiBjbGFzcz0ieWdycHMteWl2LTEzNzYxMTUyMTl5Z3Jwcy15
aXYtMTMyNTg4OTcwNm1vei1jaXRlLXByZWZpeCI+T24gMTEvMTUvMjAxMyAxOjQ0IFBNLCA8
YSByZWw9Im5vZm9sbG93IiBjbGFzcz0ieWdycHMteWl2LTEzNzYxMTUyMTl5Z3Jwcy15aXYt
MTMyNTg4OTcwNm1vei10eHQtbGluay1hYmJyZXZpYXRlZCIgdGFyZ2V0PSJfYmxhbmsiIGhy
ZWY9Im1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4iPmFuZHJleWFzdHJlbGluQC4uLjwvYT4g
d3JvdGU6PGJyPjwvZGl2PgogIDxibG9ja3F1b3RlPjxzcGFuPgogICAgPGJsb2NrcXVvdGUg
dHlwZT0iY2l0ZSI+CiAgICAgIDxwPkkmIzM5O3ZlIHNvbHZlZCB7MTAsM30sIDM2QywgRjow
OjA6MS4gSXQgd2FzIGRpZmZpY3VsdCAtIGl0IGhhcyB0b28gbWFueSAKICAgICAgY29sb3Jz
LiBUb3RhbCBjb3VudCBpcyAyNTE4IHR3aXN0cy48L3A+CiAgICAgIDxwPjxicj48L3A+CiAg
ICAgIDxwPkFuZHJleTwvcD4KICAgICAgPGRpdiBzdHlsZT0iY29sb3I6d2hpdGU7Ij48L2Rp
dj48L2Jsb2NrcXVvdGU+PGJyPjwvc3Bhbj48L2Jsb2NrcXVvdGU+PC9kaXY+PC9kaXY+CiAg
PC9kaXY+PC9ibG9ja3F1b3RlPjwvc3Bhbj48L2Jsb2NrcXVvdGU+IAo8L2Rpdj48L2Rpdj4=

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--




From: <andreyastrelin@yahoo.com>
Date: 16 Nov 2013 19:02:29 -0800
Subject: RE: New puzzles



--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64

MTAwIHB1enpsZXMgc29sdmVkIDopIA0KIA0KDQogQW5kcmV5DQogDQoNCi0tLUluIDRkX2N1
YmluZ0B5YWhvb2dyb3Vwcy5jb20sIDxhbmRyZXlhc3RyZWxpbkAuLi4+IHdyb3RlOg0KDQog
ezEwLDN9IDE4QyBGMC42NzowOjEgc29sdmVkLiAyNjgwIHR3aXN0cy4NCiBJdCB3YXMgZWFz
eSBlbm91Z2ggKGlmIHlvdSBrbm93IGhvdyB0byBoYW5kbGUgcGllY2VzIHdpdGggd3Jvbmcg
b3JpZW50YXRpb24pLg0KIA0KDQogQW5kcmV5DQogDQoNCiAtLS1JbiA0RF9DdWJpbmdAeWFo
b29ncm91cHMuY29tLCA8ZWQuYmF1bWFubkAuLi4+IHdyb3RlOg0KDQog77u/IEknYW0gcGxh
eWluZyB3aXRoIE1UIGh5cCB7MTAsM10sMThDIEYwOjA6MShub3QgRjE6MDowKS4gMzAwIHR3
aXN0cyBmb3IgNCBvZiB0aGUgMTggY29sb3JzIHNvIGZhci4gSSBkb24ndCBjYXJlIGZvciB0
aGUgbnVtYmVyIG9mIHR3aXN0cyBhbmQgdXNlIDMgY3ljbGVzIGFsbCB0aGUgd2F5IGV2ZW4g
ZWFybHkgaW4gb3JkZXIgdG8gbm90IGRpc3R1cmIgYW55dGhpbmcuIEkgYWxzbyBjb21wbGV0
ZSBjb2xvcnMgYmVmb3JlIHN0YXJ0aW5nIGEgbmV3IG9uZS4gU28gdGhpcyBwdXp6bGUgaXMg
bm90IHNvIGhhcmQgdG8gc29sdmUgYnV0IGZ1bm55Lg0KICANCiBJIHdpbGwgY29tcGxldGUg
d2lraSBmb3IgdGhlIDYwIG5ldyBwdXp6bGVzIGFuZCBlZmZlY3RpdmVseSBhaW0gZm9yIHRo
ZSBuZXcgNTAlLg0KICANCiBFZA0KICANCiAtLS0tLSBPcmlnaW5hbCBNZXNzYWdlIC0tLS0t
IA0KIEZyb206IGFuZHJleWFzdHJlbGluQC4uLiBtYWlsdG86YW5kcmV5YXN0cmVsaW5ALi4u
IA0KIFRvOiA0RF9DdWJpbmdAeWFob29ncm91cHMuY29tIG1haWx0bzo0RF9DdWJpbmdAeWFo
b29ncm91cHMuY29tIA0KIFNlbnQ6IFNhdHVyZGF5LCBOb3ZlbWJlciAxNiwgMjAxMyA0OjAy
IEFNDQogU3ViamVjdDogUkU6IFJlOiBbTUM0RF0gTmV3IHB1enpsZXMNCiANCg0KICAgTWF5
IGJlLCBidXQgaW4gMTIwLUNlbGwgeW91IGhhdmUgc29tZSBzZWFyY2ggdG9vbHMuIEluIDM2
LWNvbG9yIHRpbGVzIHRoZXJlIGlzIG1hbnkgc2ltaWxhciBjb2xvcnMgdGhhdCBtYWtlcyBk
aWZmaWN1bHQgc2VhcmNoaW5nIG9mIHRoZSBjb3JyZWN0IHRpbGUgKGV2ZW4gd2hlbiB5b3Ug
bWFrZSBvbmUgZmFjZSB3aGl0ZSBhbmQgYWxsIG90aGVycyBkYXJrKS4gUGllY2VzIG9mIEYx
OjA6MCBhcmUgdmVyeSB0aGluLCBtb3N0IG9mIHRoZW0gYXJlIGNsb3NlIHRvIGJvdW5kYXJ5
LCBzbyB5b3UgZG9uJ3QgZXZlbiBzZWUgdGhlbSBhbGwuIA0KIFRvcG9sb2d5IG9mIHsxMCwz
fSwgMzZDIGlzIG5vdCB2ZXJ5IGVhc3kgKGFjdHVhbGx5LCBJIGRvbid0IHVuZGVyc3RhbmQg
aXQgYXQgYWxsKS4gV2hlbiBJIGxvb2sgZm9yIHRoZSB0aWxlLCBJJ20gbm90IGFsd2F5cyBz
dXJlIHRoYXQgbXkgc2VhcmNoIGNvdmVycyB3aG9sZSBmdW5kYW1lbnRhbCBhcmVhLCBzbyBJ
IGNhbiBnbyBvdmVyIHRoZSBzYW1lIHBhcnQgYWdhaW4gYW5kIGFnYWluLiBBbmQgdGhlcmUg
YXJlIHByb2JsZW1zIHdpdGggZmluZGluZyBhIHdheSBmb3IgdGlsZXMgdGhhdCBkb2Vzbid0
IGRpc3R1cmIgYWxyZWFkeSBzb2x2ZWQgcGFydHMuDQogDQoNCiBBbmRyZXkNCiANCg0KLS0t
SW4gNERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwgPG1lbGluZGFALi4uPiB3cm90ZToNCg0K
IFdoYXQgYWJvdXQgaXQgaXMgZGlmZmljdWx0PyBJIHdvdWxkIGd1ZXNzIHRoYXQgbW9yZSBj
b2xvcnMgbWFrZXMgaXQgbW9yZSB0ZWRpb3VzIGJ1dCBub3QgaGFyZGVyLCBzaW1pbGFyIHRv
IDNeNCB2ZXJzdXMgMTIwLUNlbGwuDQotTWVsaW5kYQ0KDQogT24gMTEvMTUvMjAxMyAxOjQ0
IFBNLCBhbmRyZXlhc3RyZWxpbkAuLi4gbWFpbHRvOmFuZHJleWFzdHJlbGluQC4uLiB3cm90
ZToNCg0KIEkndmUgc29sdmVkIHsxMCwzfSwgMzZDLCBGOjA6MDoxLiBJdCB3YXMgZGlmZmlj
dWx0IC0gaXQgaGFzIHRvbyBtYW55IGNvbG9ycy4gVG90YWwgY291bnQgaXMgMjUxOCB0d2lz
dHMuDQogDQoNCiBBbmRyZXkNCiANCg0KDQoNCiANCiANCg0KDQogDQo=

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64

PHA+MTAwIHB1enpsZXMgc29sdmVkIDopJm5ic3A7PC9wPjxwPjxicj48L3A+PHA+QW5kcmV5
PC9wPiA8ZGl2IGNsYXNzPSJ5Z3JvdXBzLXF1b3RlZCIgc3R5bGU9ImRpc3BsYXk6bm9uZTsi
Pjxicj48YnI+LS0tSW4gNGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwgJmx0O2FuZHJleWFz
dHJlbGluQC4uLiZndDsgd3JvdGU6PGJyPjxicj48ZGl2IGlkPSJ5Z3Jwcy15aXYtMTI2NTg1
ODU3Ij48cD57MTAsM30gMThDIEYwLjY3OjA6MSBzb2x2ZWQuJm5ic3A7MjY4MCB0d2lzdHMu
PC9wPjxwPkl0IHdhcyBlYXN5IGVub3VnaCAoaWYgeW91IGtub3cgaG93IHRvIGhhbmRsZSBw
aWVjZXMgd2l0aCB3cm9uZyBvcmllbnRhdGlvbikuPC9wPjxwPjxicj48L3A+PHA+QW5kcmV5
PC9wPiA8ZGl2IGNsYXNzPSJ5Z3Jwcy15aXYtMTI2NTg1ODU3eWdyb3Vwcy1xdW90ZWQiIHN0
eWxlPSJkaXNwbGF5Om5vbmU7Ij48YnI+PGJyPjxibG9ja3F1b3RlPjxzcGFuPiAtLS1JbiA0
RF9DdWJpbmdAeWFob29ncm91cHMuY29tLCAmbHQ7ZWQuYmF1bWFubkAuLi4mZ3Q7IHdyb3Rl
Ojxicj48YnI+PGRpdiBpZD0ieWdycHMteWl2LTEyNjU4NTg1N3lncnBzLXlpdi0xMzc2MTE1
MjE5Ij7vu78KCiAKIAogCjxkaXY+PGZvbnQgZmFjZT0iQXJpYWwiIHNpemU9IjIiPkkmIzM5
O2FtIHBsYXlpbmcgd2l0aCBNVCBoeXAgezEwLDNdLDE4QyBGMDowOjEobm90IApGMTowOjAp
LiAzMDAgdHdpc3RzIGZvciA0IG9mIHRoZSAxOCBjb2xvcnMgc28gZmFyLiBJIGRvbiYjMzk7
dCBjYXJlIGZvciB0aGUgbnVtYmVyIApvZiB0d2lzdHMgYW5kIHVzZSAzIGN5Y2xlcyBhbGwg
dGhlIHdheSBldmVuIGVhcmx5IGluIG9yZGVyIHRvIG5vdCBkaXN0dXJiIAphbnl0aGluZy4g
SSBhbHNvIGNvbXBsZXRlIGNvbG9ycyBiZWZvcmUgc3RhcnRpbmcgYSBuZXcgb25lLiBTbyB0
aGlzIHB1enpsZSBpcyAKbm90IHNvIGhhcmQgdG8gc29sdmUgYnV0IGZ1bm55LjwvZm9udD48
L2Rpdj4KPGRpdj48Zm9udCBmYWNlPSJBcmlhbCIgc2l6ZT0iMiI+PC9mb250PiZuYnNwOzwv
ZGl2Pgo8ZGl2Pjxmb250IGZhY2U9IkFyaWFsIiBzaXplPSIyIj5JIHdpbGwgY29tcGxldGUg
d2lraSBmb3IgdGhlIDYwIG5ldyBwdXp6bGVzIGFuZCAKZWZmZWN0aXZlbHkgYWltIGZvciB0
aGUgbmV3IDUwJS48L2ZvbnQ+PC9kaXY+CjxkaXY+PGZvbnQgZmFjZT0iQXJpYWwiIHNpemU9
IjIiPjwvZm9udD4mbmJzcDs8L2Rpdj4KPGRpdj48Zm9udCBmYWNlPSJBcmlhbCIgc2l6ZT0i
MiI+RWQ8L2ZvbnQ+PC9kaXY+CjxkaXY+PGZvbnQgZmFjZT0iQXJpYWwiIHNpemU9IjIiPjwv
Zm9udD4mbmJzcDs8L2Rpdj4KPGJsb2NrcXVvdGU+PHNwYW4+IDxibG9ja3F1b3RlIHN0eWxl
PSJwYWRkaW5nLXJpZ2h0OjBweDtwYWRkaW5nLWxlZnQ6NXB4O21hcmdpbi1yaWdodDowcHg7
bWFyZ2luLWxlZnQ6NXB4O2JvcmRlci1sZWZ0LWNvbG9yOnJnYigwLCAwLCAwKTtib3JkZXIt
bGVmdC13aWR0aDoycHg7Ym9yZGVyLWxlZnQtc3R5bGU6c29saWQ7Ij4KICA8ZGl2IHN0eWxl
PSJmb250OjEwcHQvbm9ybWFsIGFyaWFsO2ZvbnQtc2l6ZS1hZGp1c3Q6bm9uZTtmb250LXN0
cmV0Y2g6bm9ybWFsOyI+LS0tLS0gT3JpZ2luYWwgTWVzc2FnZSAtLS0tLSA8L2Rpdj4KICA8
ZGl2IHN0eWxlPSJiYWNrZ3JvdW5kOnJnYigyMjgsIDIyOCwgMjI4KTtmb250OjEwcHQvbm9y
bWFsIGFyaWFsO2ZvbnQtc2l6ZS1hZGp1c3Q6bm9uZTtmb250LXN0cmV0Y2g6bm9ybWFsOyI+
PGI+RnJvbTo8L2I+IAogIDxhIHJlbD0ibm9mb2xsb3ciIHRpdGxlPSJhbmRyZXlhc3RyZWxp
bkAuLi4iIHRhcmdldD0iX2JsYW5rIiBocmVmPSJtYWlsdG86YW5kcmV5YXN0cmVsaW5ALi4u
Ij5hbmRyZXlhc3RyZWxpbkAuLi48L2E+IDwvZGl2PgogIDxkaXYgc3R5bGU9ImZvbnQ6MTBw
dC9ub3JtYWwgYXJpYWw7Zm9udC1zaXplLWFkanVzdDpub25lO2ZvbnQtc3RyZXRjaDpub3Jt
YWw7Ij48Yj5Ubzo8L2I+IDxhIHJlbD0ibm9mb2xsb3ciIHRpdGxlPSI0RF9DdWJpbmdAeWFo
b29ncm91cHMuY29tIiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOjREX0N1YmluZ0B5
YWhvb2dyb3Vwcy5jb20iPjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb208L2E+IDwvZGl2Pgog
IDxkaXYgc3R5bGU9ImZvbnQ6MTBwdC9ub3JtYWwgYXJpYWw7Zm9udC1zaXplLWFkanVzdDpu
b25lO2ZvbnQtc3RyZXRjaDpub3JtYWw7Ij48Yj5TZW50OjwvYj4gU2F0dXJkYXksIE5vdmVt
YmVyIDE2LCAyMDEzIDQ6MDIgCiAgQU08L2Rpdj4KICA8ZGl2IHN0eWxlPSJmb250OjEwcHQv
bm9ybWFsIGFyaWFsO2ZvbnQtc2l6ZS1hZGp1c3Q6bm9uZTtmb250LXN0cmV0Y2g6bm9ybWFs
OyI+PGI+U3ViamVjdDo8L2I+IFJFOiBSZTogW01DNERdIE5ldyBwdXp6bGVzPC9kaXY+CiAg
PGRpdj48YnI+PC9kaXY+PHNwYW4gc3R5bGU9ImRpc3BsYXk6bm9uZTsiPiZuYnNwOzwvc3Bh
bj4gCiAgPGRpdiBpZD0ieWdycHMteWl2LTEyNjU4NTg1N3lncnBzLXlpdi0xMzc2MTE1MjE5
eWdycC10ZXh0Ij4KICA8cD4KICA8cD4mbmJzcDtNYXkgYmUsIGJ1dCBpbiAxMjAtQ2VsbCB5
b3UgaGF2ZSBzb21lIHNlYXJjaCB0b29scy4gSW4gMzYtY29sb3IgdGlsZXMgCiAgdGhlcmUg
aXMgbWFueSBzaW1pbGFyIGNvbG9ycyB0aGF0IG1ha2VzIGRpZmZpY3VsdCBzZWFyY2hpbmcg
b2YgdGhlIGNvcnJlY3QgCiAgdGlsZSAoZXZlbiB3aGVuIHlvdSBtYWtlIG9uZSBmYWNlIHdo
aXRlIGFuZCBhbGwgb3RoZXJzIGRhcmspLiBQaWVjZXMgb2YgRjE6MDowIAogIGFyZSB2ZXJ5
IHRoaW4sJm5ic3A7bW9zdCBvZiB0aGVtIGFyZSBjbG9zZSB0byBib3VuZGFyeSwmbmJzcDtz
byB5b3UgZG9uJiMzOTt0IGV2ZW4gCiAgc2VlIHRoZW0gYWxsLiZuYnNwOzwvcD4KICA8cD5U
b3BvbG9neSBvZiB7MTAsM30sIDM2QyBpcyBub3QgdmVyeSBlYXN5IChhY3R1YWxseSwgSSBk
b24mIzM5O3QgdW5kZXJzdGFuZCBpdCAKICBhdCBhbGwpLiBXaGVuIEkgbG9vayBmb3IgdGhl
IHRpbGUsIEkmIzM5O20gbm90IGFsd2F5cyBzdXJlIHRoYXQgbXkgc2VhcmNoIGNvdmVycyAK
ICB3aG9sZSBmdW5kYW1lbnRhbCBhcmVhLCBzbyBJIGNhbiBnbyBvdmVyIHRoZSBzYW1lIHBh
cnQgYWdhaW4gYW5kIAogIGFnYWluLiZuYnNwO0FuZCZuYnNwO3RoZXJlJm5ic3A7YXJlJm5i
c3A7cHJvYmxlbXMgd2l0aCBmaW5kaW5nIGEgd2F5IAogIGZvciZuYnNwO3RpbGVzJm5ic3A7
dGhhdCBkb2VzbiYjMzk7dCBkaXN0dXJiIGFscmVhZHkgc29sdmVkIHBhcnRzLjwvcD4KICA8
cD48YnI+PC9wPgogIDxwPkFuZHJleTwvcD4KICA8ZGl2IGNsYXNzPSJ5Z3Jwcy15aXYtMTI2
NTg1ODU3eWdycHMteWl2LTEzNzYxMTUyMTl5Z3JvdXBzLXF1b3RlZCI+PGJyPjxicj4tLS1J
biA0RF9DdWJpbmdAeWFob29ncm91cHMuY29tLCAKICAmbHQ7bWVsaW5kYUAuLi4mZ3Q7IHdy
b3RlOjxicj48YnI+CiAgPGRpdiBpZD0ieWdycHMteWl2LTEyNjU4NTg1N3lncnBzLXlpdi0x
Mzc2MTE1MjE5eWdycHMteWl2LTEzMjU4ODk3MDYiPldoYXQgYWJvdXQgaXQgaXMgZGlmZmlj
dWx0PyBJIHdvdWxkIGd1ZXNzIHRoYXQgCiAgbW9yZSBjb2xvcnMgbWFrZXMgaXQgbW9yZSB0
ZWRpb3VzIGJ1dCBub3QgaGFyZGVyLCBzaW1pbGFyIHRvIDNeNCB2ZXJzdXMgCiAgMTIwLUNl
bGwuPGJyPi1NZWxpbmRhPGJyPjxicj4KICA8ZGl2IGNsYXNzPSJ5Z3Jwcy15aXYtMTI2NTg1
ODU3eWdycHMteWl2LTEzNzYxMTUyMTl5Z3Jwcy15aXYtMTMyNTg4OTcwNm1vei1jaXRlLXBy
ZWZpeCI+T24gMTEvMTUvMjAxMyAxOjQ0IFBNLCA8YSByZWw9Im5vZm9sbG93IiBjbGFzcz0i
eWdycHMteWl2LTEyNjU4NTg1N3lncnBzLXlpdi0xMzc2MTE1MjE5eWdycHMteWl2LTEzMjU4
ODk3MDZtb3otdHh0LWxpbmstYWJicmV2aWF0ZWQiIHRhcmdldD0iX2JsYW5rIiBocmVmPSJt
YWlsdG86YW5kcmV5YXN0cmVsaW5ALi4uIj5hbmRyZXlhc3RyZWxpbkAuLi48L2E+IHdyb3Rl
Ojxicj48L2Rpdj4KICA8YmxvY2txdW90ZT48c3Bhbj4KICAgIDxibG9ja3F1b3RlIHR5cGU9
ImNpdGUiPgogICAgICA8cD5JJiMzOTt2ZSBzb2x2ZWQgezEwLDN9LCAzNkMsIEY6MDowOjEu
IEl0IHdhcyBkaWZmaWN1bHQgLSBpdCBoYXMgdG9vIG1hbnkgCiAgICAgIGNvbG9ycy4gVG90
YWwgY291bnQgaXMgMjUxOCB0d2lzdHMuPC9wPgogICAgICA8cD48YnI+PC9wPgogICAgICA8
cD5BbmRyZXk8L3A+CiAgICAgIDxkaXYgc3R5bGU9ImNvbG9yOndoaXRlOyI+PC9kaXY+PC9i
bG9ja3F1b3RlPjxicj48L3NwYW4+PC9ibG9ja3F1b3RlPjwvZGl2PjwvZGl2PgogIDwvZGl2
PjwvYmxvY2txdW90ZT48L3NwYW4+PC9ibG9ja3F1b3RlPiAKPC9kaXY+PC9zcGFuPjwvYmxv
Y2txdW90ZT48L2Rpdj48L2Rpdj4gICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg
ICAgICAgICAgICAgICAgIDwvZGl2Pg==

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--




From: Melinda Green <melinda@superliminal.com>
Date: Sat, 16 Nov 2013 23:57:40 -0800
Subject: Re: [MC4D] RE: New puzzles



--------------000209020201090505050806
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: quoted-printable

Nice.

On 11/16/2013 7:02 PM, andreyastrelin@yahoo.com wrote:
>
>
> 100 puzzles solved :)
>
>
> Andrey
>
>
>
> ---In 4d_cubing@yahoogroups.com, wrote:
>
> {10,3} 18C F0.67:0:1 solved. 2680 twists.
>
> It was easy enough (if you know how to handle pieces with wrong=20
> orientation).
>
>
> Andrey
>
>
>
> ---In 4D_Cubing@yahoogroups.com, wrote:
>
> =EF=BB=BF
> I'am playing with MT hyp {10,3],18C F0:0:1(not F1:0:0). 300 twists
> for 4 of the 18 colors so far. I don't care for the number of
> twists and use 3 cycles all the way even early in order to not
> disturb anything. I also complete colors before starting a new
> one. So this puzzle is not so hard to solve but funny.
> I will complete wiki for the 60 new puzzles and effectively aim
> for the new 50%.
> Ed
>
> ----- Original Message -----
> *From:* andreyastrelin@...
> *To:* 4D_Cubing@yahoogroups.com
>
> *Sent:* Saturday, November 16, 2013 4:02 AM
> *Subject:* RE: Re: [MC4D] New puzzles
>
> May be, but in 120-Cell you have some search tools. In
> 36-color tiles there is many similar colors that makes
> difficult searching of the correct tile (even when you
> make one face white and all others dark). Pieces of F1:0:0
> are very thin, most of them are close to boundary, so you
> don't even see them all.
>
> Topology of {10,3}, 36C is not very easy (actually, I
> don't understand it at all). When I look for the tile, I'm
> not always sure that my search covers whole fundamental
> area, so I can go over the same part again and
> again. And there are problems with finding a way
> for tiles that doesn't disturb already solved parts.
>
>
> Andrey
>
>
>
> ---In 4D_Cubing@yahoogroups.com, wrote:
>
> What about it is difficult? I would guess that more colors
> makes it more tedious but not harder, similar to 3^4
> versus 120-Cell.
> -Melinda
>
> On 11/15/2013 1:44 PM, andreyastrelin@...
> wrote:
>
>> I've solved {10,3}, 36C, F:0:0:1. It was difficult -
>> it has too many colors. Total count is 2518 twists.
>>
>>
>> Andrey
>>
>
>
>
>=20


--------------000209020201090505050806
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable



">


Nice.



On 11/16/2013 7:02 PM,
ahoo.com">andreyastrelin@yahoo.com wrote:





100 puzzles solved :)=C2=A0





Andrey






---In g@yahoogroups.com">4d_cubing@yahoogroups.com, rfc2396E" href=3D"mailto:andreyastrelin@..."><andreyastrelin@...>
wrote:




{10,3} 18C F0.67:0:1 solved.=C2=A02680 twists.


It was easy enough (if you know how to handle pieces with
wrong orientation).





Andrey


style=3D"display:none;">



---In href=3D"mailto:4D_Cubing@yahoogroups.com">4D_Cubing@yahoogroups.com,
n@..."><ed.baumann@...> wrote:



=EF=BB=
=BF
I'am playing with MT
hyp {10,3],18C F0:0:1(not F1:0:0). 300 twists for
4 of the 18 colors so far. I don't care for the
number of twists and use 3 cycles all the way even
early in order to not disturb anything. I also
complete colors before starting a new one. So this
puzzle is not so hard to solve but funny.
>
=C2=A0

I will complete wiki
for the 60 new puzzles and effectively aim for the
new 50%.

=C2=A0

Ed

=C2=A0


style=3D"padding-right:0px;padding-left:5px;margin-=
right:0px;margin-left:5px;border-left-color:rgb(0,
0,
0);border-left-width:2px;border-left-style:solid;">
arial;font-size-adjust:none;font-stretch:normal;"=
>-----
Original Message -----

228);font:10pt/normal
arial;font-size-adjust:none;font-stretch:normal;"=
>From:
title=3D"andreyastrelin@..." target=3D"_blank"
href=3D"mailto:andreyastrelin@...">andreyastrel=
in@...



arial;font-size-adjust:none;font-stretch:normal;"=
>Sent:
Saturday, November 16, 2013 4:02 AM

arial;font-size-adjust:none;font-stretch:normal;"=
>Subject:
RE: Re: [MC4D] New puzzles




=C2=A0
id=3D"ygrps-yiv-126585857ygrps-yiv-1376115219ygrp=
-text">


=C2=A0May be, but in 120-Cell you have some
search tools. In 36-color tiles there is
many similar colors that makes difficult
searching of the correct tile (even when you
make one face white and all others dark).
Pieces of F1:0:0 are very thin,=C2=A0most of th=
em
are close to boundary,=C2=A0so you don't even s=
ee
them all.=C2=A0


Topology of {10,3}, 36C is not very easy
(actually, I don't understand it at all).
When I look for the tile, I'm not always
sure that my search covers whole fundamental
area, so I can go over the same part again
and again.=C2=A0And=C2=A0there=C2=A0are=C2=A0pr=
oblems with
finding a way for=C2=A0tiles=C2=A0that doesn't =
disturb
already solved parts.





Andrey


class=3D"ygrps-yiv-126585857ygrps-yiv-137611521=
9ygroups-quoted">



---In f=3D"mailto:4D_Cubing@yahoogroups.com">4D_Cubing@yahoogroups.com,
to:melinda@..."><melinda@...> wrote:



id=3D"ygrps-yiv-126585857ygrps-yiv-1376115219=
ygrps-yiv-1325889706">What
about it is difficult? I would guess that
more colors makes it more tedious but not
harder, similar to 3^4 versus 120-Cell.

-Melinda



class=3D"ygrps-yiv-126585857ygrps-yiv-1376115219ygrps-yiv-1325889706moz-cit=
e-prefix">On
11/15/2013 1:44 PM, moz-do-not-send=3D"true" rel=3D"nofollow"
class=3D"ygrps-yiv-126585857ygrps-yiv-1376115219ygrps-yiv-1325889706moz-txt=
-link-abbreviated"
target=3D"_blank"
href=3D"mailto:andreyastrelin@...">andrey=
astrelin@...
wrote:




I've solved {10,3}, 36C, F:0:0:1.
It was difficult - it has too many
colors. Total count is 2518
twists.





Andrey
















=20=20=20=20=20=20







--------------000209020201090505050806--




From: Roice <roice3@gmail.com>
Date: Sun, 17 Nov 2013 09:44:30 -0600
Subject: Re: [MC4D] RE: New puzzles



--Apple-Mail-E8D4AE29-69F1-4F38-9BCF-8894CF39289B
Content-Type: text/plain;
charset=us-ascii
Content-Transfer-Encoding: quoted-printable

Yeah, awesome!

Looks like another crystal cube order may be happening :D

(sent from my phone)

On Nov 17, 2013, at 1:57 AM, Melinda Green wrote=
:

>=20
>=20
> Nice.
>=20
> On 11/16/2013 7:02 PM, andreyastrelin@yahoo.com wrote:
>> 100 puzzles solved :)=20
>>=20
>>=20
>> Andrey
>>=20
>=20
>=20
>=20
>=20

--Apple-Mail-E8D4AE29-69F1-4F38-9BCF-8894CF39289B
Content-Type: text/html;
charset=utf-8
Content-Transfer-Encoding: quoted-printable

=3Dutf-8">

Yeah, awesome!

>
Looks like another crystal cube order may be happening :D

>(sent from my phone)

On Nov 17, 2013, at 1:57 AM, =
Melinda Green <melinda@super=
liminal.com
> wrote:








=20=20=20=20=20=20=20=20

=20=20
">
=20=20
=20=20






Nice.



On 11/16/2013 7:02 PM,
ahoo.com">andreyastrelin@yahoo.com wrote:




=20=20=20=20=20=20

100 puzzles solved :) 





Andrey






---In g@yahoogroups.com">4d_cubing@yahoogroups.com, rfc2396E" href=3D"mailto:andreyastrelin@..."><andreyastrelin@...>
wrote:




{10,3} 18C F0.67:0:1 solved. 2680 twists.


It was easy enough (if you know how to handle pieces with
wrong orientation).





Andrey


:none;">



---In href=3D"mailto:4D_Cubing@yahoogroups.com">4D_Cubing@yahoogroups.com,
n@..."><ed.baumann@...> wrote:



=EF=BB=
=BF
I'am playing with MT
hyp {10,3],18C F0:0:1(not F1:0:0). 300 twists for
4 of the 18 colors so far. I don't care for the
number of twists and use 3 cycles all the way even
early in order to not disturb anything. I also
complete colors before starting a new one. So this
puzzle is not so hard to solve but funny.
>
 

I will complete wiki
for the 60 new puzzles and effectively aim for the
new 50%.

 

Ed

 


px;margin-right:0px;margin-left:5px;border-left-color:rgb(0,
0,
0);border-left-width:2px;border-left-style:solid;">
arial;font-size-adjust:none;font-stretch:normal;"=
>-----
Original Message -----

228);font:10pt/normal
arial;font-size-adjust:none;font-stretch:normal;"=
>From:
e=3D"andreyastrelin@..." target=3D"_blank" href=3D"mailto:andreyastrelin@..=
.">andreyastrelin@...



arial;font-size-adjust:none;font-stretch:normal;"=
>Sent:
Saturday, November 16, 2013 4:02 AM

arial;font-size-adjust:none;font-stretch:normal;"=
>Subject:
RE: Re: [MC4D] New puzzles




 
grp-text">


 May be, but in 120-Cell you have some
search tools. In 36-color tiles there is
many similar colors that makes difficult
searching of the correct tile (even when you
make one face white and all others dark).
Pieces of F1:0:0 are very thin, most of th=
em
are close to boundary, so you don't even s=
ee
them all. 


Topology of {10,3}, 36C is not very easy
(actually, I don't understand it at all).
When I look for the tile, I'm not always
sure that my search covers whole fundamental
area, so I can go over the same part again
and again. And there are pr=
oblems with
finding a way for tiles that doesn't =
disturb
already solved parts.





Andrey


5219ygroups-quoted">



---In f=3D"mailto:4D_Cubing@yahoogroups.com">4D_Cubing@yahoogroups.com,
to:melinda@..."><melinda@...> wrote:



219ygrps-yiv-1325889706">What
about it is difficult? I would guess that
more colors makes it more tedious but not
harder, similar to 3^4 versus 120-Cell.

-Melinda






I've solved {10,3}, 36C, F:0:0:1.
It was difficult - it has too many
colors. Total count is 2518
twists.





Andrey
















=20=20=20=20=20=20




=20=20










--Apple-Mail-E8D4AE29-69F1-4F38-9BCF-8894CF39289B--




From: <andreyastrelin@yahoo.com>
Date: 17 Nov 2013 09:57:58 -0800
Subject: RE: New puzzles



--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64

ezcsM30gRjAuNDowOjEgRjAuODowOjEgcHV6emxlIHNvbHZlZCENCiBJdCBpcyBoeXBlcmJv
bGljIGVxdWl2YWxlbnQgb2YgImdpZ2FtaW54IiAtIHRoZXJlIGFyZSB0d28gbGF5ZXJzIG9m
IHJvdGF0aW9uIGF0IGVhY2ggZmFjZS4gTWV0aG9kIG9mIHNvbHZpbmcgaXMgYWxtb3N0IHRo
ZSBzYW1lOiBJIHN0YXJ0IHdpdGggInN1YmVkZ2UiIDEtY29sb3IgcGllY2VzLCB0aGVuIGNv
bWJpbmUgcGllY2VzIGF0IGVhY2ggZWRnZSwgc29sdmUgcHV6emxlIGxpa2UgY2xhc3NpYyBL
bGVpbiBRdWFkcmljIGFuZCBhdCBsYXN0IHB1dCAic3ViY29ybmVycyIgdG8gY29ycmVjdCBw
bGFjZS4gTW9zdCBwcm9ibGVtcyBhcmUgd2l0aCB0aGUgc2Vjb25kIHN0YWdlIC0gdGhlcmUg
YXJlIDg0IGVkZ2VzLCBhbmQgaXQncyB2ZXJ5IGRpZmZpY3VsdCB0byBmaW5kIHBhcnRzIG9m
IHRoZSBzYW1lIGVkZ2UuIEkgZGlkIGl0IGJ5IGNvbGxlY3RpbmcgYWxsIGVkZ2UgcGFydHMg
d2l0aCBzb21lIGNvbG9yIGFyb3VuZCBvbmUgY2VudGVyIGFuZCB3b3JraW5nIHdpdGggdGhl
bSAobmljZSBmZWVsaW5nIC0gd2hlbiB5b3UgY2FuIGZyZWVseSByb3RhdGUgYWxtb3N0IGFs
bCBmYWNlcyBhbmQga25vdyB0aGF0IHlvdSB3aWxsIG5vdCBzcG9pbCBhbnl0aGluZyBieSB0
aGF0KS4NCiAgIFRvdGFsIHR3aXN0IGNvdW50IC0gNzU1OC4gTWF4aW1hbCBvcGVyYXRpb24g
bGVuZ3RoIC0gMjQgKGZvciByb3RhdGluZyAzIGNvcm5lcnMgb24gdGhlIHRoaXJkIHN0YWdl
KSwgb3RoZXIgb3BlcmF0aW9ucyBhcmUgbm90IGxvbmdlciB0aGFuIDggdHdpc3RzLg0KIA0K
DQogQW5kcmV5ICANCiANCg0KLS0tSW4gNGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwgPHJv
aWNlM0AuLi4+IHdyb3RlOg0KDQogWWVhaCwgYXdlc29tZSENCiANCg0KIExvb2tzIGxpa2Ug
YW5vdGhlciBjcnlzdGFsIGN1YmUgb3JkZXIgbWF5IGJlIGhhcHBlbmluZyA6RA0KDQogKHNl
bnQgZnJvbSBteSBwaG9uZSkNCg0KDQogDQogT24gTm92IDE3LCAyMDEzLCBhdCAxOjU3IEFN
LCBNZWxpbmRhIEdyZWVuIDxtZWxpbmRhQC4uLiBtYWlsdG86bWVsaW5kYUAuLi4+IHdyb3Rl
Og0KDQoNCiBOaWNlLg0KIA0KIE9uIDExLzE2LzIwMTMgNzowMiBQTSwgYW5kcmV5YXN0cmVs
aW5ALi4uIG1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4gd3JvdGU6DQogDQogMTAwIHB1enps
ZXMgc29sdmVkIDopIA0KIA0KIA0KIEFuZHJleQ0KIA0KIA0KIC0tLUluIDRkX2N1YmluZ0B5
YWhvb2dyb3Vwcy5jb20gbWFpbHRvOjRkX2N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sIDxhbmRy
ZXlhc3RyZWxpbkAuLi4+IG1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4gd3JvdGU6DQogDQog
ezEwLDN9IDE4QyBGMC42NzowOjEgc29sdmVkLiAyNjgwIHR3aXN0cy4NCiBJdCB3YXMgZWFz
eSBlbm91Z2ggKGlmIHlvdSBrbm93IGhvdyB0byBoYW5kbGUgcGllY2VzIHdpdGggd3Jvbmcg
b3JpZW50YXRpb24pLg0KIA0KIA0KIEFuZHJleQ0KIA0KIA0KIC0tLUluIDREX0N1YmluZ0B5
YWhvb2dyb3Vwcy5jb20gbWFpbHRvOjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sIDxlZC5i
YXVtYW5uQC4uLj4gbWFpbHRvOmVkLmJhdW1hbm5ALi4uIHdyb3RlOg0KIA0KIO+7vyBJJ2Ft
IHBsYXlpbmcgd2l0aCBNVCBoeXAgezEwLDNdLDE4QyBGMDowOjEobm90IEYxOjA6MCkuIDMw
MCB0d2lzdHMgZm9yIDQgb2YgdGhlIDE4IGNvbG9ycyBzbyBmYXIuIEkgZG9uJ3QgY2FyZSBm
b3IgdGhlIG51bWJlciBvZiB0d2lzdHMgYW5kIHVzZSAzIGN5Y2xlcyBhbGwgdGhlIHdheSBl
dmVuIGVhcmx5IGluIG9yZGVyIHRvIG5vdCBkaXN0dXJiIGFueXRoaW5nLiBJIGFsc28gY29t
cGxldGUgY29sb3JzIGJlZm9yZSBzdGFydGluZyBhIG5ldyBvbmUuIFNvIHRoaXMgcHV6emxl
IGlzIG5vdCBzbyBoYXJkIHRvIHNvbHZlIGJ1dCBmdW5ueS4NCiAgDQogSSB3aWxsIGNvbXBs
ZXRlIHdpa2kgZm9yIHRoZSA2MCBuZXcgcHV6emxlcyBhbmQgZWZmZWN0aXZlbHkgYWltIGZv
ciB0aGUgbmV3IDUwJS4NCiAgDQogRWQNCiAgDQogLS0tLS0gT3JpZ2luYWwgTWVzc2FnZSAt
LS0tLSANCiBGcm9tOiBhbmRyZXlhc3RyZWxpbkAuLi4gbWFpbHRvOmFuZHJleWFzdHJlbGlu
QC4uLiANCiBUbzogNERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSBtYWlsdG86NERfQ3ViaW5n
QHlhaG9vZ3JvdXBzLmNvbSANCiBTZW50OiBTYXR1cmRheSwgTm92ZW1iZXIgMTYsIDIwMTMg
NDowMiBBTQ0KIFN1YmplY3Q6IFJFOiBSZTogW01DNERdIE5ldyBwdXp6bGVzDQogDQogDQog
ICANCiAgTWF5IGJlLCBidXQgaW4gMTIwLUNlbGwgeW91IGhhdmUgc29tZSBzZWFyY2ggdG9v
bHMuIEluIDM2LWNvbG9yIHRpbGVzIHRoZXJlIGlzIG1hbnkgc2ltaWxhciBjb2xvcnMgdGhh
dCBtYWtlcyBkaWZmaWN1bHQgc2VhcmNoaW5nIG9mIHRoZSBjb3JyZWN0IHRpbGUgKGV2ZW4g
d2hlbiB5b3UgbWFrZSBvbmUgZmFjZSB3aGl0ZSBhbmQgYWxsIG90aGVycyBkYXJrKS4gUGll
Y2VzIG9mIEYxOjA6MCBhcmUgdmVyeSB0aGluLCBtb3N0IG9mIHRoZW0gYXJlIGNsb3NlIHRv
IGJvdW5kYXJ5LCBzbyB5b3UgZG9uJ3QgZXZlbiBzZWUgdGhlbSBhbGwuIA0KIFRvcG9sb2d5
IG9mIHsxMCwzfSwgMzZDIGlzIG5vdCB2ZXJ5IGVhc3kgKGFjdHVhbGx5LCBJIGRvbid0IHVu
ZGVyc3RhbmQgaXQgYXQgYWxsKS4gV2hlbiBJIGxvb2sgZm9yIHRoZSB0aWxlLCBJJ20gbm90
IGFsd2F5cyBzdXJlIHRoYXQgbXkgc2VhcmNoIGNvdmVycyB3aG9sZSBmdW5kYW1lbnRhbCBh
cmVhLCBzbyBJIGNhbiBnbyBvdmVyIHRoZSBzYW1lIHBhcnQgYWdhaW4gYW5kIGFnYWluLiBB
bmQgdGhlcmUgYXJlIHByb2JsZW1zIHdpdGggZmluZGluZyBhIHdheSBmb3IgdGlsZXMgdGhh
dCBkb2Vzbid0IGRpc3R1cmIgYWxyZWFkeSBzb2x2ZWQgcGFydHMuDQogDQogDQogQW5kcmV5
DQogDQogDQogLS0tSW4gNERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSBtYWlsdG86NERfQ3Vi
aW5nQHlhaG9vZ3JvdXBzLmNvbSwgPG1lbGluZGFALi4uPiBtYWlsdG86bWVsaW5kYUAuLi4g
d3JvdGU6DQogDQogV2hhdCBhYm91dCBpdCBpcyBkaWZmaWN1bHQ/IEkgd291bGQgZ3Vlc3Mg
dGhhdCBtb3JlIGNvbG9ycyBtYWtlcyBpdCBtb3JlIHRlZGlvdXMgYnV0IG5vdCBoYXJkZXIs
IHNpbWlsYXIgdG8gM140IHZlcnN1cyAxMjAtQ2VsbC4NCiAtTWVsaW5kYQ0KIA0KIE9uIDEx
LzE1LzIwMTMgMTo0NCBQTSwgYW5kcmV5YXN0cmVsaW5ALi4uIG1haWx0bzphbmRyZXlhc3Ry
ZWxpbkAuLi4gd3JvdGU6DQogDQogSSd2ZSBzb2x2ZWQgezEwLDN9LCAzNkMsIEY6MDowOjEu
IEl0IHdhcyBkaWZmaWN1bHQgLSBpdCBoYXMgdG9vIG1hbnkgY29sb3JzLiBUb3RhbCBjb3Vu
dCBpcyAyNTE4IHR3aXN0cy4NCiANCiANCiBBbmRyZXkNCiANCiANCiANCiANCiANCiANCiAN
CiANCiANCiANCiANCiANCg0KIA0K

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64

PHA+ezcsM30gRjAuNDowOjEgRjAuODowOjEmbmJzcDtwdXp6bGUgc29sdmVkITwvcD48cD5J
dCBpcyBoeXBlcmJvbGljIGVxdWl2YWxlbnQgb2YgJnF1b3Q7Z2lnYW1pbngmcXVvdDsgLSB0
aGVyZSBhcmUgdHdvIGxheWVycyBvZiByb3RhdGlvbiBhdCBlYWNoIGZhY2UuIE1ldGhvZCBv
ZiBzb2x2aW5nIGlzIGFsbW9zdCB0aGUgc2FtZTogSSBzdGFydCB3aXRoICZxdW90O3N1YmVk
Z2UmcXVvdDsgMS1jb2xvciBwaWVjZXMsIHRoZW4gY29tYmluZSBwaWVjZXMgYXQgZWFjaCBl
ZGdlLCBzb2x2ZSBwdXp6bGUgbGlrZSBjbGFzc2ljIEtsZWluIFF1YWRyaWMgYW5kJm5ic3A7
YXQgbGFzdCZuYnNwO3B1dCAmcXVvdDtzdWJjb3JuZXJzJnF1b3Q7IHRvJm5ic3A7Y29ycmVj
dCBwbGFjZS4gTW9zdCBwcm9ibGVtcyBhcmUgd2l0aCB0aGUgc2Vjb25kIHN0YWdlIC0gdGhl
cmUgYXJlIDg0IGVkZ2VzLCBhbmQgaXQmIzM5O3MgdmVyeSBkaWZmaWN1bHQgdG8gZmluZCBw
YXJ0cyBvZiB0aGUgc2FtZSBlZGdlLiBJIGRpZCBpdCBieSBjb2xsZWN0aW5nIGFsbCBlZGdl
IHBhcnRzIHdpdGggc29tZSBjb2xvciBhcm91bmQgb25lIGNlbnRlciBhbmQgd29ya2luZyB3
aXRoIHRoZW0gKG5pY2UgZmVlbGluZyAtIHdoZW4geW91IGNhbiBmcmVlbHkgcm90YXRlIGFs
bW9zdCBhbGwgZmFjZXMmbmJzcDthbmQga25vdyB0aGF0IHlvdSB3aWxsIG5vdCBzcG9pbCBh
bnl0aGluZyBieSB0aGF0KS48L3A+PHA+Jm5ic3A7IFRvdGFsIHR3aXN0IGNvdW50IC0gNzU1
OC4mbmJzcDtNYXhpbWFsIG9wZXJhdGlvbiBsZW5ndGggLSAyNCAoZm9yIHJvdGF0aW5nIDMg
Y29ybmVycyBvbiB0aGUgdGhpcmQgc3RhZ2UpLCBvdGhlciBvcGVyYXRpb25zIGFyZSBub3Qg
bG9uZ2VyIHRoYW4gOCB0d2lzdHMuPC9wPjxwPjxicj48L3A+PHA+QW5kcmV5Jm5ic3A7Jm5i
c3A7PC9wPiA8ZGl2IGNsYXNzPSJ5Z3JvdXBzLXF1b3RlZCIgc3R5bGU9ImRpc3BsYXk6bm9u
ZTsiPjxicj48YnI+LS0tSW4gNGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwgJmx0O3JvaWNl
M0AuLi4mZ3Q7IHdyb3RlOjxicj48YnI+PGRpdiBpZD0ieWdycHMteWl2LTMwNDg3MDk2OCI+
PGRpdj5ZZWFoLCBhd2Vzb21lITwvZGl2PjxkaXY+PGJyPjwvZGl2PjxkaXY+TG9va3MgbGlr
ZSBhbm90aGVyIGNyeXN0YWwgY3ViZSBvcmRlciBtYXkgYmUgaGFwcGVuaW5nIDpEPGJyPjxi
cj48ZGl2PihzZW50IGZyb20gbXkgcGhvbmUpPGJyPjwvZGl2PjwvZGl2PjxkaXY+PGJyPjxi
bG9ja3F1b3RlPjxzcGFuPiBPbiBOb3YgMTcsIDIwMTMsIGF0IDE6NTcgQU0sIE1lbGluZGEg
R3JlZW4gJmx0OzxhIHJlbD0ibm9mb2xsb3ciIHRhcmdldD0iX2JsYW5rIiBocmVmPSJtYWls
dG86bWVsaW5kYUAuLi4iPm1lbGluZGFALi4uPC9hPiZndDsgd3JvdGU6PGJyPjxicj48L3Nw
YW4+PC9ibG9ja3F1b3RlPjwvZGl2PjxibG9ja3F1b3RlIHR5cGU9ImNpdGUiPjxkaXY+CgoK
CgoKCiAgICAgICAgCgogIAogICAgCiAgCiAgCgoKCgoKCiAgICBOaWNlLjxicj4KICAgIDxi
cj4KICAgIDxkaXYgY2xhc3M9InlncnBzLXlpdi0zMDQ4NzA5Njhtb3otY2l0ZS1wcmVmaXgi
Pk9uIDExLzE2LzIwMTMgNzowMiBQTSwKICAgICAgPGEgcmVsPSJub2ZvbGxvdyIgY2xhc3M9
InlncnBzLXlpdi0zMDQ4NzA5Njhtb3otdHh0LWxpbmstYWJicmV2aWF0ZWQiIHRhcmdldD0i
X2JsYW5rIiBocmVmPSJtYWlsdG86YW5kcmV5YXN0cmVsaW5ALi4uIj5hbmRyZXlhc3RyZWxp
bkAuLi48L2E+IHdyb3RlOjxicj4KICAgIDwvZGl2PgogICAgPGJsb2NrcXVvdGUgdHlwZT0i
Y2l0ZSI+CiAgICAgIDxzdHlsZSB0eXBlPSJ0ZXh0L2NzcyI+CjwhLS0KCiN5Z3Jwcy15aXYt
MzA0ODcwOTY4ICAKI3lncnBzLXlpdi0zMDQ4NzA5NjggLnlncnBzLXlpdi0zMDQ4NzA5Njh5
Z3JwLXBob3RvLXRpdGxlewpjbGVhcjpib3RoO2ZvbnQtc2l6ZTpzbWFsbGVyO2hlaWdodDox
NXB4O292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOmNlbnRlcjt3aWR0aDo3NXB4O30KI3ln
cnBzLXlpdi0zMDQ4NzA5NjggZGl2LnlncnBzLXlpdi0zMDQ4NzA5Njh5Z3JwLXBob3Rvewpi
YWNrZ3JvdW5kLXBvc2l0aW9uOmNlbnRlcjtiYWNrZ3JvdW5kLXJlcGVhdDpuby1yZXBlYXQ7
YmFja2dyb3VuZC1jb2xvcjp3aGl0ZTtib3JkZXI6MXB4IHNvbGlkIGJsYWNrO2hlaWdodDo2
MnB4O3dpZHRoOjYycHg7fQoKI3lncnBzLXlpdi0zMDQ4NzA5NjggZGl2LnlncnBzLXlpdi0z
MDQ4NzA5NjhwaG90by10aXRsZSAKICAgICAgICAgYSwgCiN5Z3Jwcy15aXYtMzA0ODcwOTY4
IGRpdi55Z3Jwcy15aXYtMzA0ODcwOTY4cGhvdG8tdGl0bGUgYTphY3RpdmUsIAojeWdycHMt
eWl2LTMwNDg3MDk2OCBkaXYueWdycHMteWl2LTMwNDg3MDk2OHBob3RvLXRpdGxlIGE6aG92
ZXIsIAojeWdycHMteWl2LTMwNDg3MDk2OCBkaXYueWdycHMteWl2LTMwNDg3MDk2OHBob3Rv
LXRpdGxlIGE6dmlzaXRlZCB7CnRleHQtZGVjb3JhdGlvbjpub25lO30KCiN5Z3Jwcy15aXYt
MzA0ODcwOTY4IGRpdi55Z3Jwcy15aXYtMzA0ODcwOTY4YXR0YWNoLXRhYmxlIGRpdi55Z3Jw
cy15aXYtMzA0ODcwOTY4YXR0YWNoLXJvdyB7CmNsZWFyOmJvdGg7fQoKI3lncnBzLXlpdi0z
MDQ4NzA5NjggZGl2LnlncnBzLXlpdi0zMDQ4NzA5NjhhdHRhY2gtdGFibGUgZGl2LnlncnBz
LXlpdi0zMDQ4NzA5NjhhdHRhY2gtcm93IGRpdiB7CmZsb2F0OmxlZnQ7fQoKI3lncnBzLXlp
di0zMDQ4NzA5NjggcCB7CmNsZWFyOmJvdGg7cGFkZGluZzoxNXB4IDAgM3B4IDA7b3ZlcmZs
b3c6aGlkZGVuO30KCiN5Z3Jwcy15aXYtMzA0ODcwOTY4IGRpdi55Z3Jwcy15aXYtMzA0ODcw
OTY4eWdycC1maWxlIHsKd2lkdGg6MzBweDt9CiN5Z3Jwcy15aXYtMzA0ODcwOTY4IGRpdi55
Z3Jwcy15aXYtMzA0ODcwOTY4YXR0YWNoLXRhYmxlIGRpdi55Z3Jwcy15aXYtMzA0ODcwOTY4
YXR0YWNoLXJvdyBkaXYgZGl2IGEgewp0ZXh0LWRlY29yYXRpb246bm9uZTt9CgojeWdycHMt
eWl2LTMwNDg3MDk2OCBkaXYueWdycHMteWl2LTMwNDg3MDk2OGF0dGFjaC10YWJsZSBkaXYu
eWdycHMteWl2LTMwNDg3MDk2OGF0dGFjaC1yb3cgZGl2IGRpdiBzcGFuIHsKZm9udC13ZWln
aHQ6bm9ybWFsO30KCiN5Z3Jwcy15aXYtMzA0ODcwOTY4IGRpdi55Z3Jwcy15aXYtMzA0ODcw
OTY4eWdycC1maWxlLXRpdGxlIHsKZm9udC13ZWlnaHQ6Ym9sZDt9Ci0tPjwvc3R5bGU+CiAg
ICAgIAogICAgICA8cD4xMDAgcHV6emxlcyBzb2x2ZWQgOikmbmJzcDs8L3A+CiAgICAgIDxw
Pjxicj4KICAgICAgPC9wPgogICAgICA8cD5BbmRyZXk8L3A+CiAgICAgIDxkaXYgY2xhc3M9
InlncnBzLXlpdi0zMDQ4NzA5Njh5Z3JvdXBzLXF1b3RlZCIgc3R5bGU9ImRpc3BsYXk6bm9u
ZTsiPjxicj4KICAgICAgICA8YnI+CiAgICAgICAgLS0tSW4gPGEgcmVsPSJub2ZvbGxvdyIg
Y2xhc3M9InlncnBzLXlpdi0zMDQ4NzA5Njhtb3otdHh0LWxpbmstYWJicmV2aWF0ZWQiIHRh
cmdldD0iX2JsYW5rIiBocmVmPSJtYWlsdG86NGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSI+
NGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbTwvYT4sIDxhIHJlbD0ibm9mb2xsb3ciIGNsYXNz
PSJ5Z3Jwcy15aXYtMzA0ODcwOTY4bW96LXR4dC1saW5rLXJmYzIzOTZFIiB0YXJnZXQ9Il9i
bGFuayIgaHJlZj0ibWFpbHRvOmFuZHJleWFzdHJlbGluQC4uLiI+Jmx0O2FuZHJleWFzdHJl
bGluQC4uLiZndDs8L2E+CiAgICAgICAgd3JvdGU6PGJyPgogICAgICAgIDxicj4KICAgICAg
ICA8ZGl2IGlkPSJ5Z3Jwcy15aXYtMzA0ODcwOTY4eWdycHMteWl2LTEyNjU4NTg1NyI+CiAg
ICAgICAgICA8cD57MTAsM30gMThDIEYwLjY3OjA6MSBzb2x2ZWQuJm5ic3A7MjY4MCB0d2lz
dHMuPC9wPgogICAgICAgICAgPHA+SXQgd2FzIGVhc3kgZW5vdWdoIChpZiB5b3Uga25vdyBo
b3cgdG8gaGFuZGxlIHBpZWNlcyB3aXRoCiAgICAgICAgICAgIHdyb25nIG9yaWVudGF0aW9u
KS48L3A+CiAgICAgICAgICA8cD48YnI+CiAgICAgICAgICA8L3A+CiAgICAgICAgICA8cD5B
bmRyZXk8L3A+CiAgICAgICAgICA8ZGl2IGNsYXNzPSJ5Z3Jwcy15aXYtMzA0ODcwOTY4eWdy
cHMteWl2LTEyNjU4NTg1N3lncm91cHMtcXVvdGVkIiBzdHlsZT0iZGlzcGxheTpub25lOyI+
PGJyPgogICAgICAgICAgICA8YnI+CiAgICAgICAgICAgIDxibG9ja3F1b3RlPjxzcGFuPiAt
LS1JbiA8YSByZWw9Im5vZm9sbG93IiBjbGFzcz0ieWdycHMteWl2LTMwNDg3MDk2OG1vei10
eHQtbGluay1hYmJyZXZpYXRlZCIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9Im1haWx0bzo0RF9D
dWJpbmdAeWFob29ncm91cHMuY29tIj40RF9DdWJpbmdAeWFob29ncm91cHMuY29tPC9hPiwK
ICAgICAgICAgICAgICAgIDxhIHJlbD0ibm9mb2xsb3ciIGNsYXNzPSJ5Z3Jwcy15aXYtMzA0
ODcwOTY4bW96LXR4dC1saW5rLXJmYzIzOTZFIiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFp
bHRvOmVkLmJhdW1hbm5ALi4uIj4mbHQ7ZWQuYmF1bWFubkAuLi4mZ3Q7PC9hPiB3cm90ZTo8
YnI+CiAgICAgICAgICAgICAgICA8YnI+CiAgICAgICAgICAgICAgICA8ZGl2IGlkPSJ5Z3Jw
cy15aXYtMzA0ODcwOTY4eWdycHMteWl2LTEyNjU4NTg1N3lncnBzLXlpdi0xMzc2MTE1MjE5
Ij7vu78KICAgICAgICAgICAgICAgICAgPGRpdj48Zm9udCBmYWNlPSJBcmlhbCIgc2l6ZT0i
MiI+SSYjMzk7YW0gcGxheWluZyB3aXRoIE1UCiAgICAgICAgICAgICAgICAgICAgICBoeXAg
ezEwLDNdLDE4QyBGMDowOjEobm90IEYxOjA6MCkuIDMwMCB0d2lzdHMgZm9yCiAgICAgICAg
ICAgICAgICAgICAgICA0IG9mIHRoZSAxOCBjb2xvcnMgc28gZmFyLiBJIGRvbiYjMzk7dCBj
YXJlIGZvciB0aGUKICAgICAgICAgICAgICAgICAgICAgIG51bWJlciBvZiB0d2lzdHMgYW5k
IHVzZSAzIGN5Y2xlcyBhbGwgdGhlIHdheSBldmVuCiAgICAgICAgICAgICAgICAgICAgICBl
YXJseSBpbiBvcmRlciB0byBub3QgZGlzdHVyYiBhbnl0aGluZy4gSSBhbHNvCiAgICAgICAg
ICAgICAgICAgICAgICBjb21wbGV0ZSBjb2xvcnMgYmVmb3JlIHN0YXJ0aW5nIGEgbmV3IG9u
ZS4gU28gdGhpcwogICAgICAgICAgICAgICAgICAgICAgcHV6emxlIGlzIG5vdCBzbyBoYXJk
IHRvIHNvbHZlIGJ1dCBmdW5ueS48L2ZvbnQ+PC9kaXY+CiAgICAgICAgICAgICAgICAgIDxk
aXY+Jm5ic3A7PC9kaXY+CiAgICAgICAgICAgICAgICAgIDxkaXY+PGZvbnQgZmFjZT0iQXJp
YWwiIHNpemU9IjIiPkkgd2lsbCBjb21wbGV0ZSB3aWtpCiAgICAgICAgICAgICAgICAgICAg
ICBmb3IgdGhlIDYwIG5ldyBwdXp6bGVzIGFuZCBlZmZlY3RpdmVseSBhaW0gZm9yIHRoZQog
ICAgICAgICAgICAgICAgICAgICAgbmV3IDUwJS48L2ZvbnQ+PC9kaXY+CiAgICAgICAgICAg
ICAgICAgIDxkaXY+Jm5ic3A7PC9kaXY+CiAgICAgICAgICAgICAgICAgIDxkaXY+PGZvbnQg
ZmFjZT0iQXJpYWwiIHNpemU9IjIiPkVkPC9mb250PjwvZGl2PgogICAgICAgICAgICAgICAg
ICA8ZGl2PiZuYnNwOzwvZGl2PgogICAgICAgICAgICAgICAgICA8YmxvY2txdW90ZT48c3Bh
bj4KICAgICAgICAgICAgICAgICAgICAgIDxibG9ja3F1b3RlIHN0eWxlPSJwYWRkaW5nLXJp
Z2h0OjBweDtwYWRkaW5nLWxlZnQ6NXB4O21hcmdpbi1yaWdodDowcHg7bWFyZ2luLWxlZnQ6
NXB4O2JvcmRlci1sZWZ0LWNvbG9yOnJnYigwLCAwLCAwKTtib3JkZXItbGVmdC13aWR0aDoy
cHg7Ym9yZGVyLWxlZnQtc3R5bGU6c29saWQ7Ij4KICAgICAgICAgICAgICAgICAgICAgICAg
PGRpdiBzdHlsZT0iZm9udDoxMHB0L25vcm1hbCBhcmlhbDtmb250LXNpemUtYWRqdXN0Om5v
bmU7Zm9udC1zdHJldGNoOm5vcm1hbDsiPi0tLS0tCiAgICAgICAgICAgICAgICAgICAgICAg
ICAgT3JpZ2luYWwgTWVzc2FnZSAtLS0tLSA8L2Rpdj4KICAgICAgICAgICAgICAgICAgICAg
ICAgPGRpdiBzdHlsZT0iYmFja2dyb3VuZDpyZ2IoMjI4LCAyMjgsIDIyOCk7Zm9udDoxMHB0
L25vcm1hbCBhcmlhbDtmb250LXNpemUtYWRqdXN0Om5vbmU7Zm9udC1zdHJldGNoOm5vcm1h
bDsiPjxiPkZyb206PC9iPgogICAgICAgICAgICAgICAgICAgICAgICAgIDxhIHJlbD0ibm9m
b2xsb3ciIHRpdGxlPSJhbmRyZXlhc3RyZWxpbkAuLi4iIHRhcmdldD0iX2JsYW5rIiBocmVm
PSJtYWlsdG86YW5kcmV5YXN0cmVsaW5ALi4uIj5hbmRyZXlhc3RyZWxpbkAuLi48L2E+CiAg
ICAgICAgICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAgICAgICAgICA8
ZGl2IHN0eWxlPSJmb250OjEwcHQvbm9ybWFsIGFyaWFsO2ZvbnQtc2l6ZS1hZGp1c3Q6bm9u
ZTtmb250LXN0cmV0Y2g6bm9ybWFsOyI+PGI+VG86PC9iPgogICAgICAgICAgICAgICAgICAg
ICAgICAgIDxhIHJlbD0ibm9mb2xsb3ciIHRpdGxlPSI0RF9DdWJpbmdAeWFob29ncm91cHMu
Y29tIiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOjREX0N1YmluZ0B5YWhvb2dyb3Vw
cy5jb20iPjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb208L2E+CiAgICAgICAgICAgICAgICAg
ICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAgICAgICAgICA8ZGl2IHN0eWxlPSJmb250
OjEwcHQvbm9ybWFsIGFyaWFsO2ZvbnQtc2l6ZS1hZGp1c3Q6bm9uZTtmb250LXN0cmV0Y2g6
bm9ybWFsOyI+PGI+U2VudDo8L2I+CiAgICAgICAgICAgICAgICAgICAgICAgICAgU2F0dXJk
YXksIE5vdmVtYmVyIDE2LCAyMDEzIDQ6MDIgQU08L2Rpdj4KICAgICAgICAgICAgICAgICAg
ICAgICAgPGRpdiBzdHlsZT0iZm9udDoxMHB0L25vcm1hbCBhcmlhbDtmb250LXNpemUtYWRq
dXN0Om5vbmU7Zm9udC1zdHJldGNoOm5vcm1hbDsiPjxiPlN1YmplY3Q6PC9iPgogICAgICAg
ICAgICAgICAgICAgICAgICAgIFJFOiBSZTogW01DNERdIE5ldyBwdXp6bGVzPC9kaXY+CiAg
ICAgICAgICAgICAgICAgICAgICAgIDxkaXY+PGJyPgogICAgICAgICAgICAgICAgICAgICAg
ICA8L2Rpdj4KICAgICAgICAgICAgICAgICAgICAgICAgPHNwYW4gc3R5bGU9ImRpc3BsYXk6
bm9uZTsiPiZuYnNwOzwvc3Bhbj4KICAgICAgICAgICAgICAgICAgICAgICAgPGRpdiBpZD0i
eWdycHMteWl2LTMwNDg3MDk2OHlncnBzLXlpdi0xMjY1ODU4NTd5Z3Jwcy15aXYtMTM3NjEx
NTIxOXlncnAtdGV4dCI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgPHA+IDwvcD4KICAg
ICAgICAgICAgICAgICAgICAgICAgICA8cD4mbmJzcDtNYXkgYmUsIGJ1dCBpbiAxMjAtQ2Vs
bCB5b3UgaGF2ZSBzb21lCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWFyY2ggdG9v
bHMuIEluIDM2LWNvbG9yIHRpbGVzIHRoZXJlIGlzCiAgICAgICAgICAgICAgICAgICAgICAg
ICAgICBtYW55IHNpbWlsYXIgY29sb3JzIHRoYXQgbWFrZXMgZGlmZmljdWx0CiAgICAgICAg
ICAgICAgICAgICAgICAgICAgICBzZWFyY2hpbmcgb2YgdGhlIGNvcnJlY3QgdGlsZSAoZXZl
biB3aGVuIHlvdQogICAgICAgICAgICAgICAgICAgICAgICAgICAgbWFrZSBvbmUgZmFjZSB3
aGl0ZSBhbmQgYWxsIG90aGVycyBkYXJrKS4KICAgICAgICAgICAgICAgICAgICAgICAgICAg
IFBpZWNlcyBvZiBGMTowOjAgYXJlIHZlcnkgdGhpbiwmbmJzcDttb3N0IG9mIHRoZW0KICAg
ICAgICAgICAgICAgICAgICAgICAgICAgIGFyZSBjbG9zZSB0byBib3VuZGFyeSwmbmJzcDtz
byB5b3UgZG9uJiMzOTt0IGV2ZW4gc2VlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICB0
aGVtIGFsbC4mbmJzcDs8L3A+CiAgICAgICAgICAgICAgICAgICAgICAgICAgPHA+VG9wb2xv
Z3kgb2YgezEwLDN9LCAzNkMgaXMgbm90IHZlcnkgZWFzeQogICAgICAgICAgICAgICAgICAg
ICAgICAgICAgKGFjdHVhbGx5LCBJIGRvbiYjMzk7dCB1bmRlcnN0YW5kIGl0IGF0IGFsbCku
CiAgICAgICAgICAgICAgICAgICAgICAgICAgICBXaGVuIEkgbG9vayBmb3IgdGhlIHRpbGUs
IEkmIzM5O20gbm90IGFsd2F5cwogICAgICAgICAgICAgICAgICAgICAgICAgICAgc3VyZSB0
aGF0IG15IHNlYXJjaCBjb3ZlcnMgd2hvbGUgZnVuZGFtZW50YWwKICAgICAgICAgICAgICAg
ICAgICAgICAgICAgIGFyZWEsIHNvIEkgY2FuIGdvIG92ZXIgdGhlIHNhbWUgcGFydCBhZ2Fp
bgogICAgICAgICAgICAgICAgICAgICAgICAgICAgYW5kIGFnYWluLiZuYnNwO0FuZCZuYnNw
O3RoZXJlJm5ic3A7YXJlJm5ic3A7cHJvYmxlbXMgd2l0aAogICAgICAgICAgICAgICAgICAg
ICAgICAgICAgZmluZGluZyBhIHdheSBmb3ImbmJzcDt0aWxlcyZuYnNwO3RoYXQgZG9lc24m
IzM5O3QgZGlzdHVyYgogICAgICAgICAgICAgICAgICAgICAgICAgICAgYWxyZWFkeSBzb2x2
ZWQgcGFydHMuPC9wPgogICAgICAgICAgICAgICAgICAgICAgICAgIDxwPjxicj4KICAgICAg
ICAgICAgICAgICAgICAgICAgICA8L3A+CiAgICAgICAgICAgICAgICAgICAgICAgICAgPHA+
QW5kcmV5PC9wPgogICAgICAgICAgICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9InlncnBz
LXlpdi0zMDQ4NzA5Njh5Z3Jwcy15aXYtMTI2NTg1ODU3eWdycHMteWl2LTEzNzYxMTUyMTl5
Z3JvdXBzLXF1b3RlZCI+PGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgPGJyPgog
ICAgICAgICAgICAgICAgICAgICAgICAgICAgLS0tSW4gPGEgcmVsPSJub2ZvbGxvdyIgY2xh
c3M9InlncnBzLXlpdi0zMDQ4NzA5Njhtb3otdHh0LWxpbmstYWJicmV2aWF0ZWQiIHRhcmdl
dD0iX2JsYW5rIiBocmVmPSJtYWlsdG86NERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSI+NERf
Q3ViaW5nQHlhaG9vZ3JvdXBzLmNvbTwvYT4sCiAgICAgICAgICAgICAgICAgICAgICAgICAg
ICA8YSByZWw9Im5vZm9sbG93IiBjbGFzcz0ieWdycHMteWl2LTMwNDg3MDk2OG1vei10eHQt
bGluay1yZmMyMzk2RSIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9Im1haWx0bzptZWxpbmRhQC4u
LiI+Jmx0O21lbGluZGFALi4uJmd0OzwvYT4gd3JvdGU6PGJyPgogICAgICAgICAgICAgICAg
ICAgICAgICAgICAgPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgPGRpdiBpZD0i
eWdycHMteWl2LTMwNDg3MDk2OHlncnBzLXlpdi0xMjY1ODU4NTd5Z3Jwcy15aXYtMTM3NjEx
NTIxOXlncnBzLXlpdi0xMzI1ODg5NzA2Ij5XaGF0CiAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgIGFib3V0IGl0IGlzIGRpZmZpY3VsdD8gSSB3b3VsZCBndWVzcyB0aGF0CiAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgIG1vcmUgY29sb3JzIG1ha2VzIGl0IG1vcmUgdGVk
aW91cyBidXQgbm90CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGhhcmRlciwgc2lt
aWxhciB0byAzXjQgdmVyc3VzIDEyMC1DZWxsLjxicj4KICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgLU1lbGluZGE8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxi
cj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGRpdiBjbGFzcz0ieWdycHMteWl2
LTMwNDg3MDk2OHlncnBzLXlpdi0xMjY1ODU4NTd5Z3Jwcy15aXYtMTM3NjExNTIxOXlncnBz
LXlpdi0xMzI1ODg5NzA2bW96LWNpdGUtcHJlZml4Ij5PbgogICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgIDExLzE1LzIwMTMgMTo0NCBQTSwgPGEgcmVsPSJub2ZvbGxvdyIgY2xh
c3M9InlncnBzLXlpdi0zMDQ4NzA5Njh5Z3Jwcy15aXYtMTI2NTg1ODU3eWdycHMteWl2LTEz
NzYxMTUyMTl5Z3Jwcy15aXYtMTMyNTg4OTcwNm1vei10eHQtbGluay1hYmJyZXZpYXRlZCIg
dGFyZ2V0PSJfYmxhbmsiIGhyZWY9Im1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4iPmFuZHJl
eWFzdHJlbGluQC4uLjwvYT4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3cm90
ZTo8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICA8YmxvY2txdW90ZT48c3Bhbj4KICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgIDxibG9ja3F1b3RlIHR5cGU9ImNpdGUiPgogICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICA8cD5JJiMzOTt2ZSBzb2x2ZWQgezEwLDN9LCAz
NkMsIEY6MDowOjEuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSXQg
d2FzIGRpZmZpY3VsdCAtIGl0IGhhcyB0b28gbWFueQogICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgIGNvbG9ycy4gVG90YWwgY291bnQgaXMgMjUxOAogICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgIHR3aXN0cy48L3A+CiAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgIDxwPjxicj4KICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgPC9wPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8
cD5BbmRyZXk8L3A+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8L2Jsb2Nr
cXVvdGU+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8YnI+CiAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgPC9zcGFuPjwvYmxvY2txdW90ZT4KICAgICAgICAg
ICAgICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAgICAgICAgICAgIDwv
ZGl2PgogICAgICAgICAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICAgICAg
ICAgIDwvYmxvY2txdW90ZT4KICAgICAgICAgICAgICAgICAgICA8L3NwYW4+PC9ibG9ja3F1
b3RlPgogICAgICAgICAgICAgICAgPC9kaXY+CiAgICAgICAgICAgICAgPC9zcGFuPjwvYmxv
Y2txdW90ZT4KICAgICAgICAgIDwvZGl2PgogICAgICAgIDwvZGl2PgogICAgICA8L2Rpdj4K
ICAgICAgCiAgICAgIDxkaXYgc3R5bGU9ImNvbG9yOndoaXRlO2NsZWFyOmJvdGg7Ij48L2Rp
dj4KICAgIDwvYmxvY2txdW90ZT4KICAgIDxicj4KICAKCgoKCgoKPGRpdiBzdHlsZT0iY29s
b3I6d2hpdGU7Y2xlYXI6Ym90aDsiPjwvZGl2PgoKCjwvZGl2PjwvYmxvY2txdW90ZT48L2Rp
dj4gICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIDwv
ZGl2Pg==

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--




From: <andreyastrelin@yahoo.com>
Date: 17 Nov 2013 13:22:14 -0800
Subject: RE: New puzzles



--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64

Um9pY2UsDQogICBzb21ldGhpbmcgaXMgd3Jvbmcgd2l0aCB7MTAsM30gNkMgZWRnZS1yb3Rh
dGVkIHB1enpsZXMuIFdoZW4gSSBzZWxlY3Qgc29tZSBlZGdlLCBJIGV4cGVjdCB0aGF0IGVk
Z2VzIG9uIG9wcG9zaXRlIHNpZGVzIG9mIGl0cyBkZWNhZ29ucyB3aWxsIGJlIHNlbGVjdGVk
IHRvbyAoYmVjYXVzZSBtYXRoZW1hdGljYWxseSB0aGV5IGFyZSB0aGUgc2FtZSkuIEJ1dCB0
aGF0IGVkZ2VzIHJlbWFpbiBub24tc2VsZWN0ZWQuIFNhbWUgaXMgdHJ1ZSBmb3IgdmVydGV4
LXJvdGF0ZWQgNkMsIGFuZCBhbHNvIGZvciB7MTAsM30gMTJjb2xvci4NCiAgIElzIHRoZXJl
IHNvbWV0aGluZyBtaXNzaW5nIGluIHB1enpsZSBkZXNjcmlwdGlvbj8NCiANCg0KICAgSSBz
ZWUgdGhlIHNhbWUgaW4gezgsM30gNkMuLi4gYW5kIEkgZG9uJ3QgbGlrZSBpdCBiZWNhdXNl
IHRoZXJlIGFyZSBzb2x1dGlvbnMgb2YgdGhlc2UgcHV6emxlcyBpbiB0aGUgdGFibGUgKGlu
Y2x1ZGluZyBzb21lIG9mIG15IG93biBvbmVzKS4uLiBMb29rcyBsaWtlIHdlIHNvbHZlZCBw
dXp6bGVzIHRoYXQgYXJlIG5vdCBhcyAibWF0aGVtYXRpY2FsbHkgcHVyZSIgYXMgdGhleSBz
aG91bGQgYmUuDQogICBBbmRyZXkNCiANCg0KLS0tSW4gNGRfY3ViaW5nQHlhaG9vZ3JvdXBz
LmNvbSwgPGFuZHJleWFzdHJlbGluQC4uLj4gd3JvdGU6DQoNCiB7NywzfSBGMC40OjA6MSBG
MC44OjA6MSBwdXp6bGUgc29sdmVkIQ0KIEl0IGlzIGh5cGVyYm9saWMgZXF1aXZhbGVudCBv
ZiAiZ2lnYW1pbngiIC0gdGhlcmUgYXJlIHR3byBsYXllcnMgb2Ygcm90YXRpb24gYXQgZWFj
aCBmYWNlLiBNZXRob2Qgb2Ygc29sdmluZyBpcyBhbG1vc3QgdGhlIHNhbWU6IEkgc3RhcnQg
d2l0aCAic3ViZWRnZSIgMS1jb2xvciBwaWVjZXMsIHRoZW4gY29tYmluZSBwaWVjZXMgYXQg
ZWFjaCBlZGdlLCBzb2x2ZSBwdXp6bGUgbGlrZSBjbGFzc2ljIEtsZWluIFF1YWRyaWMgYW5k
IGF0IGxhc3QgcHV0ICJzdWJjb3JuZXJzIiB0byBjb3JyZWN0IHBsYWNlLiBNb3N0IHByb2Js
ZW1zIGFyZSB3aXRoIHRoZSBzZWNvbmQgc3RhZ2UgLSB0aGVyZSBhcmUgODQgZWRnZXMsIGFu
ZCBpdCdzIHZlcnkgZGlmZmljdWx0IHRvIGZpbmQgcGFydHMgb2YgdGhlIHNhbWUgZWRnZS4g
SSBkaWQgaXQgYnkgY29sbGVjdGluZyBhbGwgZWRnZSBwYXJ0cyB3aXRoIHNvbWUgY29sb3Ig
YXJvdW5kIG9uZSBjZW50ZXIgYW5kIHdvcmtpbmcgd2l0aCB0aGVtIChuaWNlIGZlZWxpbmcg
LSB3aGVuIHlvdSBjYW4gZnJlZWx5IHJvdGF0ZSBhbG1vc3QgYWxsIGZhY2VzIGFuZCBrbm93
IHRoYXQgeW91IHdpbGwgbm90IHNwb2lsIGFueXRoaW5nIGJ5IHRoYXQpLg0KICAgVG90YWwg
dHdpc3QgY291bnQgLSA3NTU4LiBNYXhpbWFsIG9wZXJhdGlvbiBsZW5ndGggLSAyNCAoZm9y
IHJvdGF0aW5nIDMgY29ybmVycyBvbiB0aGUgdGhpcmQgc3RhZ2UpLCBvdGhlciBvcGVyYXRp
b25zIGFyZSBub3QgbG9uZ2VyIHRoYW4gOCB0d2lzdHMuDQogDQoNCiBBbmRyZXkgIA0KIA0K
DQogLS0tSW4gNGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwgPHJvaWNlM0AuLi4+IHdyb3Rl
Og0KDQogWWVhaCwgYXdlc29tZSENCiANCg0KIExvb2tzIGxpa2UgYW5vdGhlciBjcnlzdGFs
IGN1YmUgb3JkZXIgbWF5IGJlIGhhcHBlbmluZyA6RA0KDQogKHNlbnQgZnJvbSBteSBwaG9u
ZSkNCg0KDQogDQogT24gTm92IDE3LCAyMDEzLCBhdCAxOjU3IEFNLCBNZWxpbmRhIEdyZWVu
IDxtZWxpbmRhQC4uLiBtYWlsdG86bWVsaW5kYUAuLi4+IHdyb3RlOg0KDQoNCiBOaWNlLg0K
IA0KIE9uIDExLzE2LzIwMTMgNzowMiBQTSwgYW5kcmV5YXN0cmVsaW5ALi4uIG1haWx0bzph
bmRyZXlhc3RyZWxpbkAuLi4gd3JvdGU6DQogDQogMTAwIHB1enpsZXMgc29sdmVkIDopIA0K
IA0KIA0KIEFuZHJleQ0KIA0KIA0KIC0tLUluIDRkX2N1YmluZ0B5YWhvb2dyb3Vwcy5jb20g
bWFpbHRvOjRkX2N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sIDxhbmRyZXlhc3RyZWxpbkAuLi4+
IG1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4gd3JvdGU6DQogDQogezEwLDN9IDE4QyBGMC42
NzowOjEgc29sdmVkLiAyNjgwIHR3aXN0cy4NCiBJdCB3YXMgZWFzeSBlbm91Z2ggKGlmIHlv
dSBrbm93IGhvdyB0byBoYW5kbGUgcGllY2VzIHdpdGggd3Jvbmcgb3JpZW50YXRpb24pLg0K
IA0KIA0KIEFuZHJleQ0KIA0KIA0KIC0tLUluIDREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20g
bWFpbHRvOjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sIDxlZC5iYXVtYW5uQC4uLj4gbWFp
bHRvOmVkLmJhdW1hbm5ALi4uIHdyb3RlOg0KIA0KIO+7vyBJJ2FtIHBsYXlpbmcgd2l0aCBN
VCBoeXAgezEwLDNdLDE4QyBGMDowOjEobm90IEYxOjA6MCkuIDMwMCB0d2lzdHMgZm9yIDQg
b2YgdGhlIDE4IGNvbG9ycyBzbyBmYXIuIEkgZG9uJ3QgY2FyZSBmb3IgdGhlIG51bWJlciBv
ZiB0d2lzdHMgYW5kIHVzZSAzIGN5Y2xlcyBhbGwgdGhlIHdheSBldmVuIGVhcmx5IGluIG9y
ZGVyIHRvIG5vdCBkaXN0dXJiIGFueXRoaW5nLiBJIGFsc28gY29tcGxldGUgY29sb3JzIGJl
Zm9yZSBzdGFydGluZyBhIG5ldyBvbmUuIFNvIHRoaXMgcHV6emxlIGlzIG5vdCBzbyBoYXJk
IHRvIHNvbHZlIGJ1dCBmdW5ueS4NCiAgDQogSSB3aWxsIGNvbXBsZXRlIHdpa2kgZm9yIHRo
ZSA2MCBuZXcgcHV6emxlcyBhbmQgZWZmZWN0aXZlbHkgYWltIGZvciB0aGUgbmV3IDUwJS4N
CiAgDQogRWQNCiAgDQogLS0tLS0gT3JpZ2luYWwgTWVzc2FnZSAtLS0tLSANCiBGcm9tOiBh
bmRyZXlhc3RyZWxpbkAuLi4gbWFpbHRvOmFuZHJleWFzdHJlbGluQC4uLiANCiBUbzogNERf
Q3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSBtYWlsdG86NERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNv
bSANCiBTZW50OiBTYXR1cmRheSwgTm92ZW1iZXIgMTYsIDIwMTMgNDowMiBBTQ0KIFN1Ympl
Y3Q6IFJFOiBSZTogW01DNERdIE5ldyBwdXp6bGVzDQogDQogDQogICANCiAgTWF5IGJlLCBi
dXQgaW4gMTIwLUNlbGwgeW91IGhhdmUgc29tZSBzZWFyY2ggdG9vbHMuIEluIDM2LWNvbG9y
IHRpbGVzIHRoZXJlIGlzIG1hbnkgc2ltaWxhciBjb2xvcnMgdGhhdCBtYWtlcyBkaWZmaWN1
bHQgc2VhcmNoaW5nIG9mIHRoZSBjb3JyZWN0IHRpbGUgKGV2ZW4gd2hlbiB5b3UgbWFrZSBv
bmUgZmFjZSB3aGl0ZSBhbmQgYWxsIG90aGVycyBkYXJrKS4gUGllY2VzIG9mIEYxOjA6MCBh
cmUgdmVyeSB0aGluLCBtb3N0IG9mIHRoZW0gYXJlIGNsb3NlIHRvIGJvdW5kYXJ5LCBzbyB5
b3UgZG9uJ3QgZXZlbiBzZWUgdGhlbSBhbGwuIA0KIFRvcG9sb2d5IG9mIHsxMCwzfSwgMzZD
IGlzIG5vdCB2ZXJ5IGVhc3kgKGFjdHVhbGx5LCBJIGRvbid0IHVuZGVyc3RhbmQgaXQgYXQg
YWxsKS4gV2hlbiBJIGxvb2sgZm9yIHRoZSB0aWxlLCBJJ20gbm90IGFsd2F5cyBzdXJlIHRo
YXQgbXkgc2VhcmNoIGNvdmVycyB3aG9sZSBmdW5kYW1lbnRhbCBhcmVhLCBzbyBJIGNhbiBn
byBvdmVyIHRoZSBzYW1lIHBhcnQgYWdhaW4gYW5kIGFnYWluLiBBbmQgdGhlcmUgYXJlIHBy
b2JsZW1zIHdpdGggZmluZGluZyBhIHdheSBmb3IgdGlsZXMgdGhhdCBkb2Vzbid0IGRpc3R1
cmIgYWxyZWFkeSBzb2x2ZWQgcGFydHMuDQogDQogDQogQW5kcmV5DQogDQogDQogLS0tSW4g
NERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSBtYWlsdG86NERfQ3ViaW5nQHlhaG9vZ3JvdXBz
LmNvbSwgPG1lbGluZGFALi4uPiBtYWlsdG86bWVsaW5kYUAuLi4gd3JvdGU6DQogDQogV2hh
dCBhYm91dCBpdCBpcyBkaWZmaWN1bHQ/IEkgd291bGQgZ3Vlc3MgdGhhdCBtb3JlIGNvbG9y
cyBtYWtlcyBpdCBtb3JlIHRlZGlvdXMgYnV0IG5vdCBoYXJkZXIsIHNpbWlsYXIgdG8gM140
IHZlcnN1cyAxMjAtQ2VsbC4NCiAtTWVsaW5kYQ0KIA0KIE9uIDExLzE1LzIwMTMgMTo0NCBQ
TSwgYW5kcmV5YXN0cmVsaW5ALi4uIG1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4gd3JvdGU6
DQogDQogSSd2ZSBzb2x2ZWQgezEwLDN9LCAzNkMsIEY6MDowOjEuIEl0IHdhcyBkaWZmaWN1
bHQgLSBpdCBoYXMgdG9vIG1hbnkgY29sb3JzLiBUb3RhbCBjb3VudCBpcyAyNTE4IHR3aXN0
cy4NCiANCiANCiBBbmRyZXkNCiANCiANCiANCiANCiANCiANCiANCiANCiANCiANCiANCiAN
Cg0KIA0KDQogDQo=

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64

PHA+Um9pY2UsPC9wPjxwPiZuYnNwOyBzb21ldGhpbmcgaXMgd3Jvbmcgd2l0aCB7MTAsM30g
NkMgZWRnZS1yb3RhdGVkIHB1enpsZXMuIFdoZW4gSSBzZWxlY3Qgc29tZSBlZGdlLCBJIGV4
cGVjdCB0aGF0IGVkZ2VzIG9uIG9wcG9zaXRlIHNpZGVzJm5ic3A7b2YgaXRzIGRlY2Fnb25z
Jm5ic3A7d2lsbCBiZSBzZWxlY3RlZCB0b28gKGJlY2F1c2UgbWF0aGVtYXRpY2FsbHkgdGhl
eSBhcmUgdGhlIHNhbWUpLiBCdXQgdGhhdCBlZGdlcyByZW1haW4gbm9uLXNlbGVjdGVkLiBT
YW1lIGlzIHRydWUgZm9yIHZlcnRleC1yb3RhdGVkIDZDLCBhbmQgYWxzbyBmb3IgezEwLDN9
IDEyY29sb3IuPC9wPjxwPiZuYnNwOyBJcyB0aGVyZSZuYnNwO3NvbWV0aGluZyBtaXNzaW5n
Jm5ic3A7aW4gcHV6emxlIGRlc2NyaXB0aW9uPzwvcD48cD48YnI+PC9wPjxwPiZuYnNwOyBJ
IHNlZSB0aGUgc2FtZSBpbiB7OCwzfSA2Qy4uLiBhbmQgSSBkb24mIzM5O3QgbGlrZSBpdCBi
ZWNhdXNlIHRoZXJlIGFyZSBzb2x1dGlvbnMgb2YgdGhlc2UgcHV6emxlcyBpbiB0aGUgdGFi
bGUgKGluY2x1ZGluZyBzb21lIG9mIG15IG93biZuYnNwO29uZXMpLi4uIExvb2tzIGxpa2Ug
d2Ugc29sdmVkIHB1enpsZXMgdGhhdCBhcmUgbm90IGFzICZxdW90O21hdGhlbWF0aWNhbGx5
IHB1cmUmcXVvdDsgYXMgdGhleSBzaG91bGQgYmUuPC9wPjxwPiZuYnNwOyBBbmRyZXk8L3A+
IDxkaXYgY2xhc3M9Inlncm91cHMtcXVvdGVkIiBzdHlsZT0iZGlzcGxheTpub25lOyI+PGJy
Pjxicj4tLS1JbiA0ZF9jdWJpbmdAeWFob29ncm91cHMuY29tLCAmbHQ7YW5kcmV5YXN0cmVs
aW5ALi4uJmd0OyB3cm90ZTo8YnI+PGJyPjxkaXYgaWQ9InlncnBzLXlpdi0zMTM1NzUxNyI+
PHA+ezcsM30gRjAuNDowOjEgRjAuODowOjEmbmJzcDtwdXp6bGUgc29sdmVkITwvcD48cD5J
dCBpcyBoeXBlcmJvbGljIGVxdWl2YWxlbnQgb2YgJnF1b3Q7Z2lnYW1pbngmcXVvdDsgLSB0
aGVyZSBhcmUgdHdvIGxheWVycyBvZiByb3RhdGlvbiBhdCBlYWNoIGZhY2UuIE1ldGhvZCBv
ZiBzb2x2aW5nIGlzIGFsbW9zdCB0aGUgc2FtZTogSSBzdGFydCB3aXRoICZxdW90O3N1YmVk
Z2UmcXVvdDsgMS1jb2xvciBwaWVjZXMsIHRoZW4gY29tYmluZSBwaWVjZXMgYXQgZWFjaCBl
ZGdlLCBzb2x2ZSBwdXp6bGUgbGlrZSBjbGFzc2ljIEtsZWluIFF1YWRyaWMgYW5kJm5ic3A7
YXQgbGFzdCZuYnNwO3B1dCAmcXVvdDtzdWJjb3JuZXJzJnF1b3Q7IHRvJm5ic3A7Y29ycmVj
dCBwbGFjZS4gTW9zdCBwcm9ibGVtcyBhcmUgd2l0aCB0aGUgc2Vjb25kIHN0YWdlIC0gdGhl
cmUgYXJlIDg0IGVkZ2VzLCBhbmQgaXQmIzM5O3MgdmVyeSBkaWZmaWN1bHQgdG8gZmluZCBw
YXJ0cyBvZiB0aGUgc2FtZSBlZGdlLiBJIGRpZCBpdCBieSBjb2xsZWN0aW5nIGFsbCBlZGdl
IHBhcnRzIHdpdGggc29tZSBjb2xvciBhcm91bmQgb25lIGNlbnRlciBhbmQgd29ya2luZyB3
aXRoIHRoZW0gKG5pY2UgZmVlbGluZyAtIHdoZW4geW91IGNhbiBmcmVlbHkgcm90YXRlIGFs
bW9zdCBhbGwgZmFjZXMmbmJzcDthbmQga25vdyB0aGF0IHlvdSB3aWxsIG5vdCBzcG9pbCBh
bnl0aGluZyBieSB0aGF0KS48L3A+PHA+Jm5ic3A7IFRvdGFsIHR3aXN0IGNvdW50IC0gNzU1
OC4mbmJzcDtNYXhpbWFsIG9wZXJhdGlvbiBsZW5ndGggLSAyNCAoZm9yIHJvdGF0aW5nIDMg
Y29ybmVycyBvbiB0aGUgdGhpcmQgc3RhZ2UpLCBvdGhlciBvcGVyYXRpb25zIGFyZSBub3Qg
bG9uZ2VyIHRoYW4gOCB0d2lzdHMuPC9wPjxwPjxicj48L3A+PHA+QW5kcmV5Jm5ic3A7Jm5i
c3A7PC9wPiA8ZGl2IGNsYXNzPSJ5Z3Jwcy15aXYtMzEzNTc1MTd5Z3JvdXBzLXF1b3RlZCIg
c3R5bGU9ImRpc3BsYXk6bm9uZTsiPjxicj48YnI+PGJsb2NrcXVvdGU+PHNwYW4+IC0tLUlu
IDRkX2N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sICZsdDtyb2ljZTNALi4uJmd0OyB3cm90ZTo8
YnI+PGJyPjxkaXYgaWQ9InlncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5Njgi
PjxkaXY+WWVhaCwgYXdlc29tZSE8L2Rpdj48ZGl2Pjxicj48L2Rpdj48ZGl2Pkxvb2tzIGxp
a2UgYW5vdGhlciBjcnlzdGFsIGN1YmUgb3JkZXIgbWF5IGJlIGhhcHBlbmluZyA6RDxicj48
YnI+PGRpdj4oc2VudCBmcm9tIG15IHBob25lKTxicj48L2Rpdj48L2Rpdj48ZGl2Pjxicj48
YmxvY2txdW90ZT48c3Bhbj4gT24gTm92IDE3LCAyMDEzLCBhdCAxOjU3IEFNLCBNZWxpbmRh
IEdyZWVuICZsdDs8YSByZWw9Im5vZm9sbG93IiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFp
bHRvOm1lbGluZGFALi4uIj5tZWxpbmRhQC4uLjwvYT4mZ3Q7IHdyb3RlOjxicj48YnI+PC9z
cGFuPjwvYmxvY2txdW90ZT48L2Rpdj48YmxvY2txdW90ZSB0eXBlPSJjaXRlIj48ZGl2PgoK
CgoKCgogICAgICAgIAoKICAKICAgIAogIAogIAoKCgoKCgogICAgTmljZS48YnI+CiAgICA8
YnI+CiAgICA8ZGl2IGNsYXNzPSJ5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcw
OTY4bW96LWNpdGUtcHJlZml4Ij5PbiAxMS8xNi8yMDEzIDc6MDIgUE0sCiAgICAgIDxhIHJl
bD0ibm9mb2xsb3ciIGNsYXNzPSJ5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcw
OTY4bW96LXR4dC1saW5rLWFiYnJldmlhdGVkIiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFp
bHRvOmFuZHJleWFzdHJlbGluQC4uLiI+YW5kcmV5YXN0cmVsaW5ALi4uPC9hPiB3cm90ZTo8
YnI+CiAgICA8L2Rpdj4KICAgIDxibG9ja3F1b3RlIHR5cGU9ImNpdGUiPgogICAgICA8c3R5
bGUgdHlwZT0idGV4dC9jc3MiPgo8IS0tCgojeWdycHMteWl2LTMxMzU3NTE3ICN5Z3Jwcy15
aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4ICAKI3lncnBzLXlpdi0zMTM1NzUxN3ln
cnBzLXlpdi0zMDQ4NzA5NjggLnlncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5
Njh5Z3JwLXBob3RvLXRpdGxlewpjbGVhcjpib3RoO2ZvbnQtc2l6ZTpzbWFsbGVyO2hlaWdo
dDoxNXB4O292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOmNlbnRlcjt3aWR0aDo3NXB4O30K
I3lncnBzLXlpdi0zMTM1NzUxNyAjeWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3
MDk2OCBkaXYueWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3MDk2OHlncnAtcGhv
dG97CmJhY2tncm91bmQtcG9zaXRpb246Y2VudGVyO2JhY2tncm91bmQtcmVwZWF0Om5vLXJl
cGVhdDtiYWNrZ3JvdW5kLWNvbG9yOndoaXRlO2JvcmRlcjoxcHggc29saWQgYmxhY2s7aGVp
Z2h0OjYycHg7d2lkdGg6NjJweDt9CgojeWdycHMteWl2LTMxMzU3NTE3ICN5Z3Jwcy15aXYt
MzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4IGRpdi55Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jw
cy15aXYtMzA0ODcwOTY4cGhvdG8tdGl0bGUgCiAgICAgICAgIGEsIAojeWdycHMteWl2LTMx
MzU3NTE3ICN5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4IGRpdi55Z3Jw
cy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4cGhvdG8tdGl0bGUgYTphY3RpdmUs
IAojeWdycHMteWl2LTMxMzU3NTE3ICN5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0
ODcwOTY4IGRpdi55Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4cGhvdG8t
dGl0bGUgYTpob3ZlciwgCiN5Z3Jwcy15aXYtMzEzNTc1MTcgI3lncnBzLXlpdi0zMTM1NzUx
N3lncnBzLXlpdi0zMDQ4NzA5NjggZGl2LnlncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0z
MDQ4NzA5NjhwaG90by10aXRsZSBhOnZpc2l0ZWQgewp0ZXh0LWRlY29yYXRpb246bm9uZTt9
CgojeWdycHMteWl2LTMxMzU3NTE3ICN5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0
ODcwOTY4IGRpdi55Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4YXR0YWNo
LXRhYmxlIGRpdi55Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4YXR0YWNo
LXJvdyB7CmNsZWFyOmJvdGg7fQoKI3lncnBzLXlpdi0zMTM1NzUxNyAjeWdycHMteWl2LTMx
MzU3NTE3eWdycHMteWl2LTMwNDg3MDk2OCBkaXYueWdycHMteWl2LTMxMzU3NTE3eWdycHMt
eWl2LTMwNDg3MDk2OGF0dGFjaC10YWJsZSBkaXYueWdycHMteWl2LTMxMzU3NTE3eWdycHMt
eWl2LTMwNDg3MDk2OGF0dGFjaC1yb3cgZGl2IHsKZmxvYXQ6bGVmdDt9CgojeWdycHMteWl2
LTMxMzU3NTE3ICN5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4IHAgewpj
bGVhcjpib3RoO3BhZGRpbmc6MTVweCAwIDNweCAwO292ZXJmbG93OmhpZGRlbjt9CgojeWdy
cHMteWl2LTMxMzU3NTE3ICN5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4
IGRpdi55Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4eWdycC1maWxlIHsK
d2lkdGg6MzBweDt9CiN5Z3Jwcy15aXYtMzEzNTc1MTcgI3lncnBzLXlpdi0zMTM1NzUxN3ln
cnBzLXlpdi0zMDQ4NzA5NjggZGl2LnlncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4
NzA5NjhhdHRhY2gtdGFibGUgZGl2LnlncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4
NzA5NjhhdHRhY2gtcm93IGRpdiBkaXYgYSB7CnRleHQtZGVjb3JhdGlvbjpub25lO30KCiN5
Z3Jwcy15aXYtMzEzNTc1MTcgI3lncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5
NjggZGl2LnlncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5NjhhdHRhY2gtdGFi
bGUgZGl2LnlncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5NjhhdHRhY2gtcm93
IGRpdiBkaXYgc3BhbiB7CmZvbnQtd2VpZ2h0Om5vcm1hbDt9CgojeWdycHMteWl2LTMxMzU3
NTE3ICN5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4IGRpdi55Z3Jwcy15
aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4eWdycC1maWxlLXRpdGxlIHsKZm9udC13
ZWlnaHQ6Ym9sZDt9Ci0tPjwvc3R5bGU+CiAgICAgIAogICAgICA8cD4xMDAgcHV6emxlcyBz
b2x2ZWQgOikmbmJzcDs8L3A+CiAgICAgIDxwPjxicj4KICAgICAgPC9wPgogICAgICA8cD5B
bmRyZXk8L3A+CiAgICAgIDxkaXYgY2xhc3M9InlncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlp
di0zMDQ4NzA5Njh5Z3JvdXBzLXF1b3RlZCIgc3R5bGU9ImRpc3BsYXk6bm9uZTsiPjxicj4K
ICAgICAgICA8YnI+CiAgICAgICAgLS0tSW4gPGEgcmVsPSJub2ZvbGxvdyIgY2xhc3M9Inln
cnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5Njhtb3otdHh0LWxpbmstYWJicmV2
aWF0ZWQiIHRhcmdldD0iX2JsYW5rIiBocmVmPSJtYWlsdG86NGRfY3ViaW5nQHlhaG9vZ3Jv
dXBzLmNvbSI+NGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbTwvYT4sIDxhIHJlbD0ibm9mb2xs
b3ciIGNsYXNzPSJ5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4bW96LXR4
dC1saW5rLXJmYzIzOTZFIiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOmFuZHJleWFz
dHJlbGluQC4uLiI+Jmx0O2FuZHJleWFzdHJlbGluQC4uLiZndDs8L2E+CiAgICAgICAgd3Jv
dGU6PGJyPgogICAgICAgIDxicj4KICAgICAgICA8ZGl2IGlkPSJ5Z3Jwcy15aXYtMzEzNTc1
MTd5Z3Jwcy15aXYtMzA0ODcwOTY4eWdycHMteWl2LTEyNjU4NTg1NyI+CiAgICAgICAgICA8
cD57MTAsM30gMThDIEYwLjY3OjA6MSBzb2x2ZWQuJm5ic3A7MjY4MCB0d2lzdHMuPC9wPgog
ICAgICAgICAgPHA+SXQgd2FzIGVhc3kgZW5vdWdoIChpZiB5b3Uga25vdyBob3cgdG8gaGFu
ZGxlIHBpZWNlcyB3aXRoCiAgICAgICAgICAgIHdyb25nIG9yaWVudGF0aW9uKS48L3A+CiAg
ICAgICAgICA8cD48YnI+CiAgICAgICAgICA8L3A+CiAgICAgICAgICA8cD5BbmRyZXk8L3A+
CiAgICAgICAgICA8ZGl2IGNsYXNzPSJ5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0
ODcwOTY4eWdycHMteWl2LTEyNjU4NTg1N3lncm91cHMtcXVvdGVkIiBzdHlsZT0iZGlzcGxh
eTpub25lOyI+PGJyPgogICAgICAgICAgICA8YnI+CiAgICAgICAgICAgIDxibG9ja3F1b3Rl
PjxzcGFuPiAtLS1JbiA8YSByZWw9Im5vZm9sbG93IiBjbGFzcz0ieWdycHMteWl2LTMxMzU3
NTE3eWdycHMteWl2LTMwNDg3MDk2OG1vei10eHQtbGluay1hYmJyZXZpYXRlZCIgdGFyZ2V0
PSJfYmxhbmsiIGhyZWY9Im1haWx0bzo0RF9DdWJpbmdAeWFob29ncm91cHMuY29tIj40RF9D
dWJpbmdAeWFob29ncm91cHMuY29tPC9hPiwKICAgICAgICAgICAgICAgIDxhIHJlbD0ibm9m
b2xsb3ciIGNsYXNzPSJ5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4bW96
LXR4dC1saW5rLXJmYzIzOTZFIiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOmVkLmJh
dW1hbm5ALi4uIj4mbHQ7ZWQuYmF1bWFubkAuLi4mZ3Q7PC9hPiB3cm90ZTo8YnI+CiAgICAg
ICAgICAgICAgICA8YnI+CiAgICAgICAgICAgICAgICA8ZGl2IGlkPSJ5Z3Jwcy15aXYtMzEz
NTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4eWdycHMteWl2LTEyNjU4NTg1N3lncnBzLXlpdi0x
Mzc2MTE1MjE5Ij7vu78KICAgICAgICAgICAgICAgICAgPGRpdj48Zm9udCBmYWNlPSJBcmlh
bCIgc2l6ZT0iMiI+SSYjMzk7YW0gcGxheWluZyB3aXRoIE1UCiAgICAgICAgICAgICAgICAg
ICAgICBoeXAgezEwLDNdLDE4QyBGMDowOjEobm90IEYxOjA6MCkuIDMwMCB0d2lzdHMgZm9y
CiAgICAgICAgICAgICAgICAgICAgICA0IG9mIHRoZSAxOCBjb2xvcnMgc28gZmFyLiBJIGRv
biYjMzk7dCBjYXJlIGZvciB0aGUKICAgICAgICAgICAgICAgICAgICAgIG51bWJlciBvZiB0
d2lzdHMgYW5kIHVzZSAzIGN5Y2xlcyBhbGwgdGhlIHdheSBldmVuCiAgICAgICAgICAgICAg
ICAgICAgICBlYXJseSBpbiBvcmRlciB0byBub3QgZGlzdHVyYiBhbnl0aGluZy4gSSBhbHNv
CiAgICAgICAgICAgICAgICAgICAgICBjb21wbGV0ZSBjb2xvcnMgYmVmb3JlIHN0YXJ0aW5n
IGEgbmV3IG9uZS4gU28gdGhpcwogICAgICAgICAgICAgICAgICAgICAgcHV6emxlIGlzIG5v
dCBzbyBoYXJkIHRvIHNvbHZlIGJ1dCBmdW5ueS48L2ZvbnQ+PC9kaXY+CiAgICAgICAgICAg
ICAgICAgIDxkaXY+Jm5ic3A7PC9kaXY+CiAgICAgICAgICAgICAgICAgIDxkaXY+PGZvbnQg
ZmFjZT0iQXJpYWwiIHNpemU9IjIiPkkgd2lsbCBjb21wbGV0ZSB3aWtpCiAgICAgICAgICAg
ICAgICAgICAgICBmb3IgdGhlIDYwIG5ldyBwdXp6bGVzIGFuZCBlZmZlY3RpdmVseSBhaW0g
Zm9yIHRoZQogICAgICAgICAgICAgICAgICAgICAgbmV3IDUwJS48L2ZvbnQ+PC9kaXY+CiAg
ICAgICAgICAgICAgICAgIDxkaXY+Jm5ic3A7PC9kaXY+CiAgICAgICAgICAgICAgICAgIDxk
aXY+PGZvbnQgZmFjZT0iQXJpYWwiIHNpemU9IjIiPkVkPC9mb250PjwvZGl2PgogICAgICAg
ICAgICAgICAgICA8ZGl2PiZuYnNwOzwvZGl2PgogICAgICAgICAgICAgICAgICA8YmxvY2tx
dW90ZT48c3Bhbj4KICAgICAgICAgICAgICAgICAgICAgIDxibG9ja3F1b3RlIHN0eWxlPSJw
YWRkaW5nLXJpZ2h0OjBweDtwYWRkaW5nLWxlZnQ6NXB4O21hcmdpbi1yaWdodDowcHg7bWFy
Z2luLWxlZnQ6NXB4O2JvcmRlci1sZWZ0LWNvbG9yOnJnYigwLCAwLCAwKTtib3JkZXItbGVm
dC13aWR0aDoycHg7Ym9yZGVyLWxlZnQtc3R5bGU6c29saWQ7Ij4KICAgICAgICAgICAgICAg
ICAgICAgICAgPGRpdiBzdHlsZT0iZm9udDoxMHB0L25vcm1hbCBhcmlhbDtmb250LXNpemUt
YWRqdXN0Om5vbmU7Zm9udC1zdHJldGNoOm5vcm1hbDsiPi0tLS0tCiAgICAgICAgICAgICAg
ICAgICAgICAgICAgT3JpZ2luYWwgTWVzc2FnZSAtLS0tLSA8L2Rpdj4KICAgICAgICAgICAg
ICAgICAgICAgICAgPGRpdiBzdHlsZT0iYmFja2dyb3VuZDpyZ2IoMjI4LCAyMjgsIDIyOCk7
Zm9udDoxMHB0L25vcm1hbCBhcmlhbDtmb250LXNpemUtYWRqdXN0Om5vbmU7Zm9udC1zdHJl
dGNoOm5vcm1hbDsiPjxiPkZyb206PC9iPgogICAgICAgICAgICAgICAgICAgICAgICAgIDxh
IHJlbD0ibm9mb2xsb3ciIHRpdGxlPSJhbmRyZXlhc3RyZWxpbkAuLi4iIHRhcmdldD0iX2Js
YW5rIiBocmVmPSJtYWlsdG86YW5kcmV5YXN0cmVsaW5ALi4uIj5hbmRyZXlhc3RyZWxpbkAu
Li48L2E+CiAgICAgICAgICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAg
ICAgICAgICA8ZGl2IHN0eWxlPSJmb250OjEwcHQvbm9ybWFsIGFyaWFsO2ZvbnQtc2l6ZS1h
ZGp1c3Q6bm9uZTtmb250LXN0cmV0Y2g6bm9ybWFsOyI+PGI+VG86PC9iPgogICAgICAgICAg
ICAgICAgICAgICAgICAgIDxhIHJlbD0ibm9mb2xsb3ciIHRpdGxlPSI0RF9DdWJpbmdAeWFo
b29ncm91cHMuY29tIiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOjREX0N1YmluZ0B5
YWhvb2dyb3Vwcy5jb20iPjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb208L2E+CiAgICAgICAg
ICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAgICAgICAgICA8ZGl2IHN0
eWxlPSJmb250OjEwcHQvbm9ybWFsIGFyaWFsO2ZvbnQtc2l6ZS1hZGp1c3Q6bm9uZTtmb250
LXN0cmV0Y2g6bm9ybWFsOyI+PGI+U2VudDo8L2I+CiAgICAgICAgICAgICAgICAgICAgICAg
ICAgU2F0dXJkYXksIE5vdmVtYmVyIDE2LCAyMDEzIDQ6MDIgQU08L2Rpdj4KICAgICAgICAg
ICAgICAgICAgICAgICAgPGRpdiBzdHlsZT0iZm9udDoxMHB0L25vcm1hbCBhcmlhbDtmb250
LXNpemUtYWRqdXN0Om5vbmU7Zm9udC1zdHJldGNoOm5vcm1hbDsiPjxiPlN1YmplY3Q6PC9i
PgogICAgICAgICAgICAgICAgICAgICAgICAgIFJFOiBSZTogW01DNERdIE5ldyBwdXp6bGVz
PC9kaXY+CiAgICAgICAgICAgICAgICAgICAgICAgIDxkaXY+PGJyPgogICAgICAgICAgICAg
ICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICAgICAgICAgICAgPHNwYW4gc3R5bGU9
ImRpc3BsYXk6bm9uZTsiPiZuYnNwOzwvc3Bhbj4KICAgICAgICAgICAgICAgICAgICAgICAg
PGRpdiBpZD0ieWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3MDk2OHlncnBzLXlp
di0xMjY1ODU4NTd5Z3Jwcy15aXYtMTM3NjExNTIxOXlncnAtdGV4dCI+CiAgICAgICAgICAg
ICAgICAgICAgICAgICAgPHA+IDwvcD4KICAgICAgICAgICAgICAgICAgICAgICAgICA8cD4m
bmJzcDtNYXkgYmUsIGJ1dCBpbiAxMjAtQ2VsbCB5b3UgaGF2ZSBzb21lCiAgICAgICAgICAg
ICAgICAgICAgICAgICAgICBzZWFyY2ggdG9vbHMuIEluIDM2LWNvbG9yIHRpbGVzIHRoZXJl
IGlzCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYW55IHNpbWlsYXIgY29sb3JzIHRo
YXQgbWFrZXMgZGlmZmljdWx0CiAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWFyY2hp
bmcgb2YgdGhlIGNvcnJlY3QgdGlsZSAoZXZlbiB3aGVuIHlvdQogICAgICAgICAgICAgICAg
ICAgICAgICAgICAgbWFrZSBvbmUgZmFjZSB3aGl0ZSBhbmQgYWxsIG90aGVycyBkYXJrKS4K
ICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBpZWNlcyBvZiBGMTowOjAgYXJlIHZlcnkg
dGhpbiwmbmJzcDttb3N0IG9mIHRoZW0KICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFy
ZSBjbG9zZSB0byBib3VuZGFyeSwmbmJzcDtzbyB5b3UgZG9uJiMzOTt0IGV2ZW4gc2VlCiAg
ICAgICAgICAgICAgICAgICAgICAgICAgICB0aGVtIGFsbC4mbmJzcDs8L3A+CiAgICAgICAg
ICAgICAgICAgICAgICAgICAgPHA+VG9wb2xvZ3kgb2YgezEwLDN9LCAzNkMgaXMgbm90IHZl
cnkgZWFzeQogICAgICAgICAgICAgICAgICAgICAgICAgICAgKGFjdHVhbGx5LCBJIGRvbiYj
Mzk7dCB1bmRlcnN0YW5kIGl0IGF0IGFsbCkuCiAgICAgICAgICAgICAgICAgICAgICAgICAg
ICBXaGVuIEkgbG9vayBmb3IgdGhlIHRpbGUsIEkmIzM5O20gbm90IGFsd2F5cwogICAgICAg
ICAgICAgICAgICAgICAgICAgICAgc3VyZSB0aGF0IG15IHNlYXJjaCBjb3ZlcnMgd2hvbGUg
ZnVuZGFtZW50YWwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFyZWEsIHNvIEkgY2Fu
IGdvIG92ZXIgdGhlIHNhbWUgcGFydCBhZ2FpbgogICAgICAgICAgICAgICAgICAgICAgICAg
ICAgYW5kIGFnYWluLiZuYnNwO0FuZCZuYnNwO3RoZXJlJm5ic3A7YXJlJm5ic3A7cHJvYmxl
bXMgd2l0aAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZmluZGluZyBhIHdheSBmb3Im
bmJzcDt0aWxlcyZuYnNwO3RoYXQgZG9lc24mIzM5O3QgZGlzdHVyYgogICAgICAgICAgICAg
ICAgICAgICAgICAgICAgYWxyZWFkeSBzb2x2ZWQgcGFydHMuPC9wPgogICAgICAgICAgICAg
ICAgICAgICAgICAgIDxwPjxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICA8L3A+CiAg
ICAgICAgICAgICAgICAgICAgICAgICAgPHA+QW5kcmV5PC9wPgogICAgICAgICAgICAgICAg
ICAgICAgICAgIDxkaXYgY2xhc3M9InlncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4
NzA5Njh5Z3Jwcy15aXYtMTI2NTg1ODU3eWdycHMteWl2LTEzNzYxMTUyMTl5Z3JvdXBzLXF1
b3RlZCI+PGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgPGJyPgogICAgICAgICAg
ICAgICAgICAgICAgICAgICAgLS0tSW4gPGEgcmVsPSJub2ZvbGxvdyIgY2xhc3M9InlncnBz
LXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5Njhtb3otdHh0LWxpbmstYWJicmV2aWF0
ZWQiIHRhcmdldD0iX2JsYW5rIiBocmVmPSJtYWlsdG86NERfQ3ViaW5nQHlhaG9vZ3JvdXBz
LmNvbSI+NERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbTwvYT4sCiAgICAgICAgICAgICAgICAg
ICAgICAgICAgICA8YSByZWw9Im5vZm9sbG93IiBjbGFzcz0ieWdycHMteWl2LTMxMzU3NTE3
eWdycHMteWl2LTMwNDg3MDk2OG1vei10eHQtbGluay1yZmMyMzk2RSIgdGFyZ2V0PSJfYmxh
bmsiIGhyZWY9Im1haWx0bzptZWxpbmRhQC4uLiI+Jmx0O21lbGluZGFALi4uJmd0OzwvYT4g
d3JvdGU6PGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgPGJyPgogICAgICAgICAg
ICAgICAgICAgICAgICAgICAgPGRpdiBpZD0ieWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2
LTMwNDg3MDk2OHlncnBzLXlpdi0xMjY1ODU4NTd5Z3Jwcy15aXYtMTM3NjExNTIxOXlncnBz
LXlpdi0xMzI1ODg5NzA2Ij5XaGF0CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFi
b3V0IGl0IGlzIGRpZmZpY3VsdD8gSSB3b3VsZCBndWVzcyB0aGF0CiAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgIG1vcmUgY29sb3JzIG1ha2VzIGl0IG1vcmUgdGVkaW91cyBidXQg
bm90CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGhhcmRlciwgc2ltaWxhciB0byAz
XjQgdmVyc3VzIDEyMC1DZWxsLjxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
LU1lbGluZGE8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxicj4KICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgPGRpdiBjbGFzcz0ieWdycHMteWl2LTMxMzU3NTE3
eWdycHMteWl2LTMwNDg3MDk2OHlncnBzLXlpdi0xMjY1ODU4NTd5Z3Jwcy15aXYtMTM3NjEx
NTIxOXlncnBzLXlpdi0xMzI1ODg5NzA2bW96LWNpdGUtcHJlZml4Ij5PbgogICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgIDExLzE1LzIwMTMgMTo0NCBQTSwgPGEgcmVsPSJub2Zv
bGxvdyIgY2xhc3M9InlncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5Njh5Z3Jw
cy15aXYtMTI2NTg1ODU3eWdycHMteWl2LTEzNzYxMTUyMTl5Z3Jwcy15aXYtMTMyNTg4OTcw
Nm1vei10eHQtbGluay1hYmJyZXZpYXRlZCIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9Im1haWx0
bzphbmRyZXlhc3RyZWxpbkAuLi4iPmFuZHJleWFzdHJlbGluQC4uLjwvYT4KICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICB3cm90ZTo8YnI+CiAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8YmxvY2tx
dW90ZT48c3Bhbj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxibG9ja3F1
b3RlIHR5cGU9ImNpdGUiPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8
cD5JJiMzOTt2ZSBzb2x2ZWQgezEwLDN9LCAzNkMsIEY6MDowOjEuCiAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgSXQgd2FzIGRpZmZpY3VsdCAtIGl0IGhhcyB0b28g
bWFueQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbG9ycy4gVG90
YWwgY291bnQgaXMgMjUxOAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
IHR3aXN0cy48L3A+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxwPjxi
cj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPC9wPgogICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICA8cD5BbmRyZXk8L3A+CiAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICA8L2Jsb2NrcXVvdGU+CiAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICA8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPC9z
cGFuPjwvYmxvY2txdW90ZT4KICAgICAgICAgICAgICAgICAgICAgICAgICAgIDwvZGl2Pgog
ICAgICAgICAgICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAgICAgICAg
ICA8L2Rpdj4KICAgICAgICAgICAgICAgICAgICAgIDwvYmxvY2txdW90ZT4KICAgICAgICAg
ICAgICAgICAgICA8L3NwYW4+PC9ibG9ja3F1b3RlPgogICAgICAgICAgICAgICAgPC9kaXY+
CiAgICAgICAgICAgICAgPC9zcGFuPjwvYmxvY2txdW90ZT4KICAgICAgICAgIDwvZGl2Pgog
ICAgICAgIDwvZGl2PgogICAgICA8L2Rpdj4KICAgICAgCiAgICAgIDxkaXYgc3R5bGU9ImNv
bG9yOndoaXRlO2NsZWFyOmJvdGg7Ij48L2Rpdj4KICAgIDwvYmxvY2txdW90ZT4KICAgIDxi
cj4KICAKCgoKCgoKPGRpdiBzdHlsZT0iY29sb3I6d2hpdGU7Y2xlYXI6Ym90aDsiPjwvZGl2
PgoKCjwvZGl2PjwvYmxvY2txdW90ZT48L2Rpdj4gICAgICAgICAgICAgICAgICAgICAKICAg
ICAgICAgICAgICAgICAgICAgICAgICAgIDwvc3Bhbj48L2Jsb2NrcXVvdGU+PC9kaXY+PC9k
aXY+ICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICA8
L2Rpdj4=

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--




From: <andreyastrelin@yahoo.com>
Date: 18 Nov 2013 00:26:07 -0800
Subject: RE: RE: New puzzles



--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64

VGhlcmUgd2FzIGFuIGVycm9yIGluIG15IHs1LDV9MTJDLiBUaGVyZSBpcyBjb3JyZWN0IHZl
cnNpb246IGh0dHBzOi8vd3d3LmRyb3Bib3guY29tL3Mvd3Axd3hoczMwejMxMnZ4LyU3QjUl
MkM1JTdEMTJDLnhtbCBodHRwczovL3d3dy5kcm9wYm94LmNvbS9zL3dwMXd4aHMzMHozMTJ2
eC8lN0I1JTJDNSU3RDEyQy54bWwNCiANCg0KIEFuZHJleSANCiANCg0KLS0tSW4gNERfQ3Vi
aW5nQHlhaG9vZ3JvdXBzLmNvbSwgPGFuZHJleWFzdHJlbGluQC4uLj4gd3JvdGU6DQoNCiBS
b2ljZSwNCiAgIHNvbWV0aGluZyBpcyB3cm9uZyB3aXRoIHsxMCwzfSA2QyBlZGdlLXJvdGF0
ZWQgcHV6emxlcy4gV2hlbiBJIHNlbGVjdCBzb21lIGVkZ2UsIEkgZXhwZWN0IHRoYXQgZWRn
ZXMgb24gb3Bwb3NpdGUgc2lkZXMgb2YgaXRzIGRlY2Fnb25zIHdpbGwgYmUgc2VsZWN0ZWQg
dG9vIChiZWNhdXNlIG1hdGhlbWF0aWNhbGx5IHRoZXkgYXJlIHRoZSBzYW1lKS4gQnV0IHRo
YXQgZWRnZXMgcmVtYWluIG5vbi1zZWxlY3RlZC4gU2FtZSBpcyB0cnVlIGZvciB2ZXJ0ZXgt
cm90YXRlZCA2QywgYW5kIGFsc28gZm9yIHsxMCwzfSAxMmNvbG9yLg0KICAgSXMgdGhlcmUg
c29tZXRoaW5nIG1pc3NpbmcgaW4gcHV6emxlIGRlc2NyaXB0aW9uPw0KIA0KDQogICBJIHNl
ZSB0aGUgc2FtZSBpbiB7OCwzfSA2Qy4uLiBhbmQgSSBkb24ndCBsaWtlIGl0IGJlY2F1c2Ug
dGhlcmUgYXJlIHNvbHV0aW9ucyBvZiB0aGVzZSBwdXp6bGVzIGluIHRoZSB0YWJsZSAoaW5j
bHVkaW5nIHNvbWUgb2YgbXkgb3duIG9uZXMpLi4uIExvb2tzIGxpa2Ugd2Ugc29sdmVkIHB1
enpsZXMgdGhhdCBhcmUgbm90IGFzICJtYXRoZW1hdGljYWxseSBwdXJlIiBhcyB0aGV5IHNo
b3VsZCBiZS4NCiAgIEFuZHJleQ0KIA0KDQogLS0tSW4gNGRfY3ViaW5nQHlhaG9vZ3JvdXBz
LmNvbSwgPGFuZHJleWFzdHJlbGluQC4uLj4gd3JvdGU6DQoNCiB7NywzfSBGMC40OjA6MSBG
MC44OjA6MSBwdXp6bGUgc29sdmVkIQ0KIEl0IGlzIGh5cGVyYm9saWMgZXF1aXZhbGVudCBv
ZiAiZ2lnYW1pbngiIC0gdGhlcmUgYXJlIHR3byBsYXllcnMgb2Ygcm90YXRpb24gYXQgZWFj
aCBmYWNlLiBNZXRob2Qgb2Ygc29sdmluZyBpcyBhbG1vc3QgdGhlIHNhbWU6IEkgc3RhcnQg
d2l0aCAic3ViZWRnZSIgMS1jb2xvciBwaWVjZXMsIHRoZW4gY29tYmluZSBwaWVjZXMgYXQg
ZWFjaCBlZGdlLCBzb2x2ZSBwdXp6bGUgbGlrZSBjbGFzc2ljIEtsZWluIFF1YWRyaWMgYW5k
IGF0IGxhc3QgcHV0ICJzdWJjb3JuZXJzIiB0byBjb3JyZWN0IHBsYWNlLiBNb3N0IHByb2Js
ZW1zIGFyZSB3aXRoIHRoZSBzZWNvbmQgc3RhZ2UgLSB0aGVyZSBhcmUgODQgZWRnZXMsIGFu
ZCBpdCdzIHZlcnkgZGlmZmljdWx0IHRvIGZpbmQgcGFydHMgb2YgdGhlIHNhbWUgZWRnZS4g
SSBkaWQgaXQgYnkgY29sbGVjdGluZyBhbGwgZWRnZSBwYXJ0cyB3aXRoIHNvbWUgY29sb3Ig
YXJvdW5kIG9uZSBjZW50ZXIgYW5kIHdvcmtpbmcgd2l0aCB0aGVtIChuaWNlIGZlZWxpbmcg
LSB3aGVuIHlvdSBjYW4gZnJlZWx5IHJvdGF0ZSBhbG1vc3QgYWxsIGZhY2VzIGFuZCBrbm93
IHRoYXQgeW91IHdpbGwgbm90IHNwb2lsIGFueXRoaW5nIGJ5IHRoYXQpLg0KICAgVG90YWwg
dHdpc3QgY291bnQgLSA3NTU4LiBNYXhpbWFsIG9wZXJhdGlvbiBsZW5ndGggLSAyNCAoZm9y
IHJvdGF0aW5nIDMgY29ybmVycyBvbiB0aGUgdGhpcmQgc3RhZ2UpLCBvdGhlciBvcGVyYXRp
b25zIGFyZSBub3QgbG9uZ2VyIHRoYW4gOCB0d2lzdHMuDQogDQoNCiBBbmRyZXkgIA0KIA0K
DQogLS0tSW4gNGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwgPHJvaWNlM0AuLi4+IHdyb3Rl
Og0KDQogWWVhaCwgYXdlc29tZSENCiANCg0KIExvb2tzIGxpa2UgYW5vdGhlciBjcnlzdGFs
IGN1YmUgb3JkZXIgbWF5IGJlIGhhcHBlbmluZyA6RA0KDQogKHNlbnQgZnJvbSBteSBwaG9u
ZSkNCg0KDQogDQogT24gTm92IDE3LCAyMDEzLCBhdCAxOjU3IEFNLCBNZWxpbmRhIEdyZWVu
IDxtZWxpbmRhQC4uLiBtYWlsdG86bWVsaW5kYUAuLi4+IHdyb3RlOg0KDQoNCiBOaWNlLg0K
IA0KIE9uIDExLzE2LzIwMTMgNzowMiBQTSwgYW5kcmV5YXN0cmVsaW5ALi4uIG1haWx0bzph
bmRyZXlhc3RyZWxpbkAuLi4gd3JvdGU6DQogDQogMTAwIHB1enpsZXMgc29sdmVkIDopIA0K
IA0KIA0KIEFuZHJleQ0KIA0KIA0KIC0tLUluIDRkX2N1YmluZ0B5YWhvb2dyb3Vwcy5jb20g
bWFpbHRvOjRkX2N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sIDxhbmRyZXlhc3RyZWxpbkAuLi4+
IG1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4gd3JvdGU6DQogDQogezEwLDN9IDE4QyBGMC42
NzowOjEgc29sdmVkLiAyNjgwIHR3aXN0cy4NCiBJdCB3YXMgZWFzeSBlbm91Z2ggKGlmIHlv
dSBrbm93IGhvdyB0byBoYW5kbGUgcGllY2VzIHdpdGggd3Jvbmcgb3JpZW50YXRpb24pLg0K
IA0KIA0KIEFuZHJleQ0KIA0KIA0KIC0tLUluIDREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20g
bWFpbHRvOjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sIDxlZC5iYXVtYW5uQC4uLj4gbWFp
bHRvOmVkLmJhdW1hbm5ALi4uIHdyb3RlOg0KIA0KIO+7vyBJJ2FtIHBsYXlpbmcgd2l0aCBN
VCBoeXAgezEwLDNdLDE4QyBGMDowOjEobm90IEYxOjA6MCkuIDMwMCB0d2lzdHMgZm9yIDQg
b2YgdGhlIDE4IGNvbG9ycyBzbyBmYXIuIEkgZG9uJ3QgY2FyZSBmb3IgdGhlIG51bWJlciBv
ZiB0d2lzdHMgYW5kIHVzZSAzIGN5Y2xlcyBhbGwgdGhlIHdheSBldmVuIGVhcmx5IGluIG9y
ZGVyIHRvIG5vdCBkaXN0dXJiIGFueXRoaW5nLiBJIGFsc28gY29tcGxldGUgY29sb3JzIGJl
Zm9yZSBzdGFydGluZyBhIG5ldyBvbmUuIFNvIHRoaXMgcHV6emxlIGlzIG5vdCBzbyBoYXJk
IHRvIHNvbHZlIGJ1dCBmdW5ueS4NCiAgDQogSSB3aWxsIGNvbXBsZXRlIHdpa2kgZm9yIHRo
ZSA2MCBuZXcgcHV6emxlcyBhbmQgZWZmZWN0aXZlbHkgYWltIGZvciB0aGUgbmV3IDUwJS4N
CiAgDQogRWQNCiAgDQogLS0tLS0gT3JpZ2luYWwgTWVzc2FnZSAtLS0tLSANCiBGcm9tOiBh
bmRyZXlhc3RyZWxpbkAuLi4gbWFpbHRvOmFuZHJleWFzdHJlbGluQC4uLiANCiBUbzogNERf
Q3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSBtYWlsdG86NERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNv
bSANCiBTZW50OiBTYXR1cmRheSwgTm92ZW1iZXIgMTYsIDIwMTMgNDowMiBBTQ0KIFN1Ympl
Y3Q6IFJFOiBSZTogW01DNERdIE5ldyBwdXp6bGVzDQogDQogDQogICANCiAgTWF5IGJlLCBi
dXQgaW4gMTIwLUNlbGwgeW91IGhhdmUgc29tZSBzZWFyY2ggdG9vbHMuIEluIDM2LWNvbG9y
IHRpbGVzIHRoZXJlIGlzIG1hbnkgc2ltaWxhciBjb2xvcnMgdGhhdCBtYWtlcyBkaWZmaWN1
bHQgc2VhcmNoaW5nIG9mIHRoZSBjb3JyZWN0IHRpbGUgKGV2ZW4gd2hlbiB5b3UgbWFrZSBv
bmUgZmFjZSB3aGl0ZSBhbmQgYWxsIG90aGVycyBkYXJrKS4gUGllY2VzIG9mIEYxOjA6MCBh
cmUgdmVyeSB0aGluLCBtb3N0IG9mIHRoZW0gYXJlIGNsb3NlIHRvIGJvdW5kYXJ5LCBzbyB5
b3UgZG9uJ3QgZXZlbiBzZWUgdGhlbSBhbGwuIA0KIFRvcG9sb2d5IG9mIHsxMCwzfSwgMzZD
IGlzIG5vdCB2ZXJ5IGVhc3kgKGFjdHVhbGx5LCBJIGRvbid0IHVuZGVyc3RhbmQgaXQgYXQg
YWxsKS4gV2hlbiBJIGxvb2sgZm9yIHRoZSB0aWxlLCBJJ20gbm90IGFsd2F5cyBzdXJlIHRo
YXQgbXkgc2VhcmNoIGNvdmVycyB3aG9sZSBmdW5kYW1lbnRhbCBhcmVhLCBzbyBJIGNhbiBn
byBvdmVyIHRoZSBzYW1lIHBhcnQgYWdhaW4gYW5kIGFnYWluLiBBbmQgdGhlcmUgYXJlIHBy
b2JsZW1zIHdpdGggZmluZGluZyBhIHdheSBmb3IgdGlsZXMgdGhhdCBkb2Vzbid0IGRpc3R1
cmIgYWxyZWFkeSBzb2x2ZWQgcGFydHMuDQogDQogDQogQW5kcmV5DQogDQogDQogLS0tSW4g
NERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSBtYWlsdG86NERfQ3ViaW5nQHlhaG9vZ3JvdXBz
LmNvbSwgPG1lbGluZGFALi4uPiBtYWlsdG86bWVsaW5kYUAuLi4gd3JvdGU6DQogDQogV2hh
dCBhYm91dCBpdCBpcyBkaWZmaWN1bHQ/IEkgd291bGQgZ3Vlc3MgdGhhdCBtb3JlIGNvbG9y
cyBtYWtlcyBpdCBtb3JlIHRlZGlvdXMgYnV0IG5vdCBoYXJkZXIsIHNpbWlsYXIgdG8gM140
IHZlcnN1cyAxMjAtQ2VsbC4NCiAtTWVsaW5kYQ0KIA0KIE9uIDExLzE1LzIwMTMgMTo0NCBQ
TSwgYW5kcmV5YXN0cmVsaW5ALi4uIG1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4gd3JvdGU6
DQogDQogSSd2ZSBzb2x2ZWQgezEwLDN9LCAzNkMsIEY6MDowOjEuIEl0IHdhcyBkaWZmaWN1
bHQgLSBpdCBoYXMgdG9vIG1hbnkgY29sb3JzLiBUb3RhbCBjb3VudCBpcyAyNTE4IHR3aXN0
cy4NCiANCiANCiBBbmRyZXkNCiANCiANCiANCiANCiANCiANCiANCiANCiANCiANCiANCiAN
Cg0KIA0KDQogDQoNCg0K

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64

PHA+VGhlcmUgd2FzIGFuIGVycm9yIGluIG15IHs1LDV9MTJDLiBUaGVyZSBpcyBjb3JyZWN0
IHZlcnNpb246IDxhIHJlbD0ibm9mb2xsb3ciIHRhcmdldD0iX2JsYW5rIiBocmVmPSJodHRw
czovL3d3dy5kcm9wYm94LmNvbS9zL3dwMXd4aHMzMHozMTJ2eC8lN0I1JTJDNSU3RDEyQy54
bWwiPmh0dHBzOi8vd3d3LmRyb3Bib3guY29tL3Mvd3Axd3hoczMwejMxMnZ4LyU3QjUlMkM1
JTdEMTJDLnhtbDwvYT48L3A+PHA+PGJyPjwvcD48cD5BbmRyZXkmbmJzcDs8L3A+IDxkaXYg
Y2xhc3M9Inlncm91cHMtcXVvdGVkIiBzdHlsZT0iZGlzcGxheTpub25lOyI+PGJyPjxicj4t
LS1JbiA0RF9DdWJpbmdAeWFob29ncm91cHMuY29tLCAmbHQ7YW5kcmV5YXN0cmVsaW5ALi4u
Jmd0OyB3cm90ZTo8YnI+PGJyPjxkaXYgaWQ9InlncnBzLXlpdi0xOTM2NDEwODU3Ij48cD5S
b2ljZSw8L3A+PHA+Jm5ic3A7IHNvbWV0aGluZyBpcyB3cm9uZyB3aXRoIHsxMCwzfSA2QyBl
ZGdlLXJvdGF0ZWQgcHV6emxlcy4gV2hlbiBJIHNlbGVjdCBzb21lIGVkZ2UsIEkgZXhwZWN0
IHRoYXQgZWRnZXMgb24gb3Bwb3NpdGUgc2lkZXMmbmJzcDtvZiBpdHMgZGVjYWdvbnMmbmJz
cDt3aWxsIGJlIHNlbGVjdGVkIHRvbyAoYmVjYXVzZSBtYXRoZW1hdGljYWxseSB0aGV5IGFy
ZSB0aGUgc2FtZSkuIEJ1dCB0aGF0IGVkZ2VzIHJlbWFpbiBub24tc2VsZWN0ZWQuIFNhbWUg
aXMgdHJ1ZSBmb3IgdmVydGV4LXJvdGF0ZWQgNkMsIGFuZCBhbHNvIGZvciB7MTAsM30gMTJj
b2xvci48L3A+PHA+Jm5ic3A7IElzIHRoZXJlJm5ic3A7c29tZXRoaW5nIG1pc3NpbmcmbmJz
cDtpbiBwdXp6bGUgZGVzY3JpcHRpb24/PC9wPjxwPjxicj48L3A+PHA+Jm5ic3A7IEkgc2Vl
IHRoZSBzYW1lIGluIHs4LDN9IDZDLi4uIGFuZCBJIGRvbiYjMzk7dCBsaWtlIGl0IGJlY2F1
c2UgdGhlcmUgYXJlIHNvbHV0aW9ucyBvZiB0aGVzZSBwdXp6bGVzIGluIHRoZSB0YWJsZSAo
aW5jbHVkaW5nIHNvbWUgb2YgbXkgb3duJm5ic3A7b25lcykuLi4gTG9va3MgbGlrZSB3ZSBz
b2x2ZWQgcHV6emxlcyB0aGF0IGFyZSBub3QgYXMgJnF1b3Q7bWF0aGVtYXRpY2FsbHkgcHVy
ZSZxdW90OyBhcyB0aGV5IHNob3VsZCBiZS48L3A+PHA+Jm5ic3A7IEFuZHJleTwvcD4gPGRp
diBjbGFzcz0ieWdycHMteWl2LTE5MzY0MTA4NTd5Z3JvdXBzLXF1b3RlZCIgc3R5bGU9ImRp
c3BsYXk6bm9uZTsiPjxicj48YnI+PGJsb2NrcXVvdGU+PHNwYW4+IC0tLUluIDRkX2N1Ymlu
Z0B5YWhvb2dyb3Vwcy5jb20sICZsdDthbmRyZXlhc3RyZWxpbkAuLi4mZ3Q7IHdyb3RlOjxi
cj48YnI+PGRpdiBpZD0ieWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1MTci
PjxwPns3LDN9IEYwLjQ6MDoxIEYwLjg6MDoxJm5ic3A7cHV6emxlIHNvbHZlZCE8L3A+PHA+
SXQgaXMgaHlwZXJib2xpYyBlcXVpdmFsZW50IG9mICZxdW90O2dpZ2FtaW54JnF1b3Q7IC0g
dGhlcmUgYXJlIHR3byBsYXllcnMgb2Ygcm90YXRpb24gYXQgZWFjaCBmYWNlLiBNZXRob2Qg
b2Ygc29sdmluZyBpcyBhbG1vc3QgdGhlIHNhbWU6IEkgc3RhcnQgd2l0aCAmcXVvdDtzdWJl
ZGdlJnF1b3Q7IDEtY29sb3IgcGllY2VzLCB0aGVuIGNvbWJpbmUgcGllY2VzIGF0IGVhY2gg
ZWRnZSwgc29sdmUgcHV6emxlIGxpa2UgY2xhc3NpYyBLbGVpbiBRdWFkcmljIGFuZCZuYnNw
O2F0IGxhc3QmbmJzcDtwdXQgJnF1b3Q7c3ViY29ybmVycyZxdW90OyB0byZuYnNwO2NvcnJl
Y3QgcGxhY2UuIE1vc3QgcHJvYmxlbXMgYXJlIHdpdGggdGhlIHNlY29uZCBzdGFnZSAtIHRo
ZXJlIGFyZSA4NCBlZGdlcywgYW5kIGl0JiMzOTtzIHZlcnkgZGlmZmljdWx0IHRvIGZpbmQg
cGFydHMgb2YgdGhlIHNhbWUgZWRnZS4gSSBkaWQgaXQgYnkgY29sbGVjdGluZyBhbGwgZWRn
ZSBwYXJ0cyB3aXRoIHNvbWUgY29sb3IgYXJvdW5kIG9uZSBjZW50ZXIgYW5kIHdvcmtpbmcg
d2l0aCB0aGVtIChuaWNlIGZlZWxpbmcgLSB3aGVuIHlvdSBjYW4gZnJlZWx5IHJvdGF0ZSBh
bG1vc3QgYWxsIGZhY2VzJm5ic3A7YW5kIGtub3cgdGhhdCB5b3Ugd2lsbCBub3Qgc3BvaWwg
YW55dGhpbmcgYnkgdGhhdCkuPC9wPjxwPiZuYnNwOyBUb3RhbCB0d2lzdCBjb3VudCAtIDc1
NTguJm5ic3A7TWF4aW1hbCBvcGVyYXRpb24gbGVuZ3RoIC0gMjQgKGZvciByb3RhdGluZyAz
IGNvcm5lcnMgb24gdGhlIHRoaXJkIHN0YWdlKSwgb3RoZXIgb3BlcmF0aW9ucyBhcmUgbm90
IGxvbmdlciB0aGFuIDggdHdpc3RzLjwvcD48cD48YnI+PC9wPjxwPkFuZHJleSZuYnNwOyZu
YnNwOzwvcD4gPGRpdiBjbGFzcz0ieWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEz
NTc1MTd5Z3JvdXBzLXF1b3RlZCIgc3R5bGU9ImRpc3BsYXk6bm9uZTsiPjxicj48YnI+PGJs
b2NrcXVvdGU+PHNwYW4+IC0tLUluIDRkX2N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sICZsdDty
b2ljZTNALi4uJmd0OyB3cm90ZTo8YnI+PGJyPjxkaXYgaWQ9InlncnBzLXlpdi0xOTM2NDEw
ODU3eWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3MDk2OCI+PGRpdj5ZZWFoLCBh
d2Vzb21lITwvZGl2PjxkaXY+PGJyPjwvZGl2PjxkaXY+TG9va3MgbGlrZSBhbm90aGVyIGNy
eXN0YWwgY3ViZSBvcmRlciBtYXkgYmUgaGFwcGVuaW5nIDpEPGJyPjxicj48ZGl2PihzZW50
IGZyb20gbXkgcGhvbmUpPGJyPjwvZGl2PjwvZGl2PjxkaXY+PGJyPjxibG9ja3F1b3RlPjxz
cGFuPiBPbiBOb3YgMTcsIDIwMTMsIGF0IDE6NTcgQU0sIE1lbGluZGEgR3JlZW4gJmx0Ozxh
IHJlbD0ibm9mb2xsb3ciIHRhcmdldD0iX2JsYW5rIiBocmVmPSJtYWlsdG86bWVsaW5kYUAu
Li4iPm1lbGluZGFALi4uPC9hPiZndDsgd3JvdGU6PGJyPjxicj48L3NwYW4+PC9ibG9ja3F1
b3RlPjwvZGl2PjxibG9ja3F1b3RlIHR5cGU9ImNpdGUiPjxkaXY+CgoKCgoKCiAgICAgICAg
CgogIAogICAgCiAgCiAgCgoKCgoKCiAgICBOaWNlLjxicj4KICAgIDxicj4KICAgIDxkaXYg
Y2xhc3M9InlncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2
LTMwNDg3MDk2OG1vei1jaXRlLXByZWZpeCI+T24gMTEvMTYvMjAxMyA3OjAyIFBNLAogICAg
ICA8YSByZWw9Im5vZm9sbG93IiBjbGFzcz0ieWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15
aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4bW96LXR4dC1saW5rLWFiYnJldmlhdGVk
IiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOmFuZHJleWFzdHJlbGluQC4uLiI+YW5k
cmV5YXN0cmVsaW5ALi4uPC9hPiB3cm90ZTo8YnI+CiAgICA8L2Rpdj4KICAgIDxibG9ja3F1
b3RlIHR5cGU9ImNpdGUiPgogICAgICA8c3R5bGUgdHlwZT0idGV4dC9jc3MiPgo8IS0tCgoj
eWdycHMteWl2LTE5MzY0MTA4NTcgI3lncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMx
MzU3NTE3ICN5Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlp
di0zMDQ4NzA5NjggIAojeWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1MTd5
Z3Jwcy15aXYtMzA0ODcwOTY4IC55Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1
NzUxN3lncnBzLXlpdi0zMDQ4NzA5Njh5Z3JwLXBob3RvLXRpdGxlewpjbGVhcjpib3RoO2Zv
bnQtc2l6ZTpzbWFsbGVyO2hlaWdodDoxNXB4O292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWdu
OmNlbnRlcjt3aWR0aDo3NXB4O30KI3lncnBzLXlpdi0xOTM2NDEwODU3ICN5Z3Jwcy15aXYt
MTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxNyAjeWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jw
cy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4IGRpdi55Z3Jwcy15aXYtMTkzNjQx
MDg1N3lncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5Njh5Z3JwLXBob3Rvewpi
YWNrZ3JvdW5kLXBvc2l0aW9uOmNlbnRlcjtiYWNrZ3JvdW5kLXJlcGVhdDpuby1yZXBlYXQ7
YmFja2dyb3VuZC1jb2xvcjp3aGl0ZTtib3JkZXI6MXB4IHNvbGlkIGJsYWNrO2hlaWdodDo2
MnB4O3dpZHRoOjYycHg7fQoKI3lncnBzLXlpdi0xOTM2NDEwODU3ICN5Z3Jwcy15aXYtMTkz
NjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxNyAjeWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15
aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4IGRpdi55Z3Jwcy15aXYtMTkzNjQxMDg1
N3lncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5NjhwaG90by10aXRsZSAKICAg
ICAgICAgYSwgCiN5Z3Jwcy15aXYtMTkzNjQxMDg1NyAjeWdycHMteWl2LTE5MzY0MTA4NTd5
Z3Jwcy15aXYtMzEzNTc1MTcgI3lncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3
NTE3eWdycHMteWl2LTMwNDg3MDk2OCBkaXYueWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15
aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4cGhvdG8tdGl0bGUgYTphY3RpdmUsIAoj
eWdycHMteWl2LTE5MzY0MTA4NTcgI3lncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMx
MzU3NTE3ICN5Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlp
di0zMDQ4NzA5NjggZGl2LnlncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3
eWdycHMteWl2LTMwNDg3MDk2OHBob3RvLXRpdGxlIGE6aG92ZXIsIAojeWdycHMteWl2LTE5
MzY0MTA4NTcgI3lncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3ICN5Z3Jw
cy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5Njgg
ZGl2LnlncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMw
NDg3MDk2OHBob3RvLXRpdGxlIGE6dmlzaXRlZCB7CnRleHQtZGVjb3JhdGlvbjpub25lO30K
CiN5Z3Jwcy15aXYtMTkzNjQxMDg1NyAjeWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYt
MzEzNTc1MTcgI3lncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3eWdycHMt
eWl2LTMwNDg3MDk2OCBkaXYueWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1
MTd5Z3Jwcy15aXYtMzA0ODcwOTY4YXR0YWNoLXRhYmxlIGRpdi55Z3Jwcy15aXYtMTkzNjQx
MDg1N3lncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5NjhhdHRhY2gtcm93IHsK
Y2xlYXI6Ym90aDt9CgojeWdycHMteWl2LTE5MzY0MTA4NTcgI3lncnBzLXlpdi0xOTM2NDEw
ODU3eWdycHMteWl2LTMxMzU3NTE3ICN5Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0z
MTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5NjggZGl2LnlncnBzLXlpdi0xOTM2NDEwODU3eWdy
cHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3MDk2OGF0dGFjaC10YWJsZSBkaXYueWdy
cHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4
YXR0YWNoLXJvdyBkaXYgewpmbG9hdDpsZWZ0O30KCiN5Z3Jwcy15aXYtMTkzNjQxMDg1NyAj
eWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1MTcgI3lncnBzLXlpdi0xOTM2
NDEwODU3eWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3MDk2OCBwIHsKY2xlYXI6
Ym90aDtwYWRkaW5nOjE1cHggMCAzcHggMDtvdmVyZmxvdzpoaWRkZW47fQoKI3lncnBzLXlp
di0xOTM2NDEwODU3ICN5Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxNyAj
eWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcw
OTY4IGRpdi55Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlp
di0zMDQ4NzA5Njh5Z3JwLWZpbGUgewp3aWR0aDozMHB4O30KI3lncnBzLXlpdi0xOTM2NDEw
ODU3ICN5Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxNyAjeWdycHMteWl2
LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4IGRpdi55
Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5
NjhhdHRhY2gtdGFibGUgZGl2LnlncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3
NTE3eWdycHMteWl2LTMwNDg3MDk2OGF0dGFjaC1yb3cgZGl2IGRpdiBhIHsKdGV4dC1kZWNv
cmF0aW9uOm5vbmU7fQoKI3lncnBzLXlpdi0xOTM2NDEwODU3ICN5Z3Jwcy15aXYtMTkzNjQx
MDg1N3lncnBzLXlpdi0zMTM1NzUxNyAjeWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYt
MzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4IGRpdi55Z3Jwcy15aXYtMTkzNjQxMDg1N3ln
cnBzLXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5NjhhdHRhY2gtdGFibGUgZGl2Lnln
cnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3MDk2
OGF0dGFjaC1yb3cgZGl2IGRpdiBzcGFuIHsKZm9udC13ZWlnaHQ6bm9ybWFsO30KCiN5Z3Jw
cy15aXYtMTkzNjQxMDg1NyAjeWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1
MTcgI3lncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMw
NDg3MDk2OCBkaXYueWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jw
cy15aXYtMzA0ODcwOTY4eWdycC1maWxlLXRpdGxlIHsKZm9udC13ZWlnaHQ6Ym9sZDt9Ci0t
Pjwvc3R5bGU+CiAgICAgIAogICAgICA8cD4xMDAgcHV6emxlcyBzb2x2ZWQgOikmbmJzcDs8
L3A+CiAgICAgIDxwPjxicj4KICAgICAgPC9wPgogICAgICA8cD5BbmRyZXk8L3A+CiAgICAg
IDxkaXYgY2xhc3M9InlncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3eWdy
cHMteWl2LTMwNDg3MDk2OHlncm91cHMtcXVvdGVkIiBzdHlsZT0iZGlzcGxheTpub25lOyI+
PGJyPgogICAgICAgIDxicj4KICAgICAgICAtLS1JbiA8YSByZWw9Im5vZm9sbG93IiBjbGFz
cz0ieWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0
ODcwOTY4bW96LXR4dC1saW5rLWFiYnJldmlhdGVkIiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0i
bWFpbHRvOjRkX2N1YmluZ0B5YWhvb2dyb3Vwcy5jb20iPjRkX2N1YmluZ0B5YWhvb2dyb3Vw
cy5jb208L2E+LCA8YSByZWw9Im5vZm9sbG93IiBjbGFzcz0ieWdycHMteWl2LTE5MzY0MTA4
NTd5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4bW96LXR4dC1saW5rLXJm
YzIzOTZFIiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOmFuZHJleWFzdHJlbGluQC4u
LiI+Jmx0O2FuZHJleWFzdHJlbGluQC4uLiZndDs8L2E+CiAgICAgICAgd3JvdGU6PGJyPgog
ICAgICAgIDxicj4KICAgICAgICA8ZGl2IGlkPSJ5Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBz
LXlpdi0zMTM1NzUxN3lncnBzLXlpdi0zMDQ4NzA5Njh5Z3Jwcy15aXYtMTI2NTg1ODU3Ij4K
ICAgICAgICAgIDxwPnsxMCwzfSAxOEMgRjAuNjc6MDoxIHNvbHZlZC4mbmJzcDsyNjgwIHR3
aXN0cy48L3A+CiAgICAgICAgICA8cD5JdCB3YXMgZWFzeSBlbm91Z2ggKGlmIHlvdSBrbm93
IGhvdyB0byBoYW5kbGUgcGllY2VzIHdpdGgKICAgICAgICAgICAgd3Jvbmcgb3JpZW50YXRp
b24pLjwvcD4KICAgICAgICAgIDxwPjxicj4KICAgICAgICAgIDwvcD4KICAgICAgICAgIDxw
PkFuZHJleTwvcD4KICAgICAgICAgIDxkaXYgY2xhc3M9InlncnBzLXlpdi0xOTM2NDEwODU3
eWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3MDk2OHlncnBzLXlpdi0xMjY1ODU4
NTd5Z3JvdXBzLXF1b3RlZCIgc3R5bGU9ImRpc3BsYXk6bm9uZTsiPjxicj4KICAgICAgICAg
ICAgPGJyPgogICAgICAgICAgICA8YmxvY2txdW90ZT48c3Bhbj4gLS0tSW4gPGEgcmVsPSJu
b2ZvbGxvdyIgY2xhc3M9InlncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3
eWdycHMteWl2LTMwNDg3MDk2OG1vei10eHQtbGluay1hYmJyZXZpYXRlZCIgdGFyZ2V0PSJf
YmxhbmsiIGhyZWY9Im1haWx0bzo0RF9DdWJpbmdAeWFob29ncm91cHMuY29tIj40RF9DdWJp
bmdAeWFob29ncm91cHMuY29tPC9hPiwKICAgICAgICAgICAgICAgIDxhIHJlbD0ibm9mb2xs
b3ciIGNsYXNzPSJ5Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxN3lncnBz
LXlpdi0zMDQ4NzA5Njhtb3otdHh0LWxpbmstcmZjMjM5NkUiIHRhcmdldD0iX2JsYW5rIiBo
cmVmPSJtYWlsdG86ZWQuYmF1bWFubkAuLi4iPiZsdDtlZC5iYXVtYW5uQC4uLiZndDs8L2E+
IHdyb3RlOjxicj4KICAgICAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgICAgIDxkaXYg
aWQ9InlncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMw
NDg3MDk2OHlncnBzLXlpdi0xMjY1ODU4NTd5Z3Jwcy15aXYtMTM3NjExNTIxOSI+77u/CiAg
ICAgICAgICAgICAgICAgIDxkaXY+PGZvbnQgZmFjZT0iQXJpYWwiIHNpemU9IjIiPkkmIzM5
O2FtIHBsYXlpbmcgd2l0aCBNVAogICAgICAgICAgICAgICAgICAgICAgaHlwIHsxMCwzXSwx
OEMgRjA6MDoxKG5vdCBGMTowOjApLiAzMDAgdHdpc3RzIGZvcgogICAgICAgICAgICAgICAg
ICAgICAgNCBvZiB0aGUgMTggY29sb3JzIHNvIGZhci4gSSBkb24mIzM5O3QgY2FyZSBmb3Ig
dGhlCiAgICAgICAgICAgICAgICAgICAgICBudW1iZXIgb2YgdHdpc3RzIGFuZCB1c2UgMyBj
eWNsZXMgYWxsIHRoZSB3YXkgZXZlbgogICAgICAgICAgICAgICAgICAgICAgZWFybHkgaW4g
b3JkZXIgdG8gbm90IGRpc3R1cmIgYW55dGhpbmcuIEkgYWxzbwogICAgICAgICAgICAgICAg
ICAgICAgY29tcGxldGUgY29sb3JzIGJlZm9yZSBzdGFydGluZyBhIG5ldyBvbmUuIFNvIHRo
aXMKICAgICAgICAgICAgICAgICAgICAgIHB1enpsZSBpcyBub3Qgc28gaGFyZCB0byBzb2x2
ZSBidXQgZnVubnkuPC9mb250PjwvZGl2PgogICAgICAgICAgICAgICAgICA8ZGl2PiZuYnNw
OzwvZGl2PgogICAgICAgICAgICAgICAgICA8ZGl2Pjxmb250IGZhY2U9IkFyaWFsIiBzaXpl
PSIyIj5JIHdpbGwgY29tcGxldGUgd2lraQogICAgICAgICAgICAgICAgICAgICAgZm9yIHRo
ZSA2MCBuZXcgcHV6emxlcyBhbmQgZWZmZWN0aXZlbHkgYWltIGZvciB0aGUKICAgICAgICAg
ICAgICAgICAgICAgIG5ldyA1MCUuPC9mb250PjwvZGl2PgogICAgICAgICAgICAgICAgICA8
ZGl2PiZuYnNwOzwvZGl2PgogICAgICAgICAgICAgICAgICA8ZGl2Pjxmb250IGZhY2U9IkFy
aWFsIiBzaXplPSIyIj5FZDwvZm9udD48L2Rpdj4KICAgICAgICAgICAgICAgICAgPGRpdj4m
bmJzcDs8L2Rpdj4KICAgICAgICAgICAgICAgICAgPGJsb2NrcXVvdGU+PHNwYW4+CiAgICAg
ICAgICAgICAgICAgICAgICA8YmxvY2txdW90ZSBzdHlsZT0icGFkZGluZy1yaWdodDowcHg7
cGFkZGluZy1sZWZ0OjVweDttYXJnaW4tcmlnaHQ6MHB4O21hcmdpbi1sZWZ0OjVweDtib3Jk
ZXItbGVmdC1jb2xvcjpyZ2IoMCwgMCwgMCk7Ym9yZGVyLWxlZnQtd2lkdGg6MnB4O2JvcmRl
ci1sZWZ0LXN0eWxlOnNvbGlkOyI+CiAgICAgICAgICAgICAgICAgICAgICAgIDxkaXYgc3R5
bGU9ImZvbnQ6MTBwdC9ub3JtYWwgYXJpYWw7Zm9udC1zaXplLWFkanVzdDpub25lO2ZvbnQt
c3RyZXRjaDpub3JtYWw7Ij4tLS0tLQogICAgICAgICAgICAgICAgICAgICAgICAgIE9yaWdp
bmFsIE1lc3NhZ2UgLS0tLS0gPC9kaXY+CiAgICAgICAgICAgICAgICAgICAgICAgIDxkaXYg
c3R5bGU9ImJhY2tncm91bmQ6cmdiKDIyOCwgMjI4LCAyMjgpO2ZvbnQ6MTBwdC9ub3JtYWwg
YXJpYWw7Zm9udC1zaXplLWFkanVzdDpub25lO2ZvbnQtc3RyZXRjaDpub3JtYWw7Ij48Yj5G
cm9tOjwvYj4KICAgICAgICAgICAgICAgICAgICAgICAgICA8YSByZWw9Im5vZm9sbG93IiB0
aXRsZT0iYW5kcmV5YXN0cmVsaW5ALi4uIiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRv
OmFuZHJleWFzdHJlbGluQC4uLiI+YW5kcmV5YXN0cmVsaW5ALi4uPC9hPgogICAgICAgICAg
ICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICAgICAgICAgICAgPGRpdiBzdHls
ZT0iZm9udDoxMHB0L25vcm1hbCBhcmlhbDtmb250LXNpemUtYWRqdXN0Om5vbmU7Zm9udC1z
dHJldGNoOm5vcm1hbDsiPjxiPlRvOjwvYj4KICAgICAgICAgICAgICAgICAgICAgICAgICA8
YSByZWw9Im5vZm9sbG93IiB0aXRsZT0iNERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSIgdGFy
Z2V0PSJfYmxhbmsiIGhyZWY9Im1haWx0bzo0RF9DdWJpbmdAeWFob29ncm91cHMuY29tIj40
RF9DdWJpbmdAeWFob29ncm91cHMuY29tPC9hPgogICAgICAgICAgICAgICAgICAgICAgICA8
L2Rpdj4KICAgICAgICAgICAgICAgICAgICAgICAgPGRpdiBzdHlsZT0iZm9udDoxMHB0L25v
cm1hbCBhcmlhbDtmb250LXNpemUtYWRqdXN0Om5vbmU7Zm9udC1zdHJldGNoOm5vcm1hbDsi
PjxiPlNlbnQ6PC9iPgogICAgICAgICAgICAgICAgICAgICAgICAgIFNhdHVyZGF5LCBOb3Zl
bWJlciAxNiwgMjAxMyA0OjAyIEFNPC9kaXY+CiAgICAgICAgICAgICAgICAgICAgICAgIDxk
aXYgc3R5bGU9ImZvbnQ6MTBwdC9ub3JtYWwgYXJpYWw7Zm9udC1zaXplLWFkanVzdDpub25l
O2ZvbnQtc3RyZXRjaDpub3JtYWw7Ij48Yj5TdWJqZWN0OjwvYj4KICAgICAgICAgICAgICAg
ICAgICAgICAgICBSRTogUmU6IFtNQzREXSBOZXcgcHV6emxlczwvZGl2PgogICAgICAgICAg
ICAgICAgICAgICAgICA8ZGl2Pjxicj4KICAgICAgICAgICAgICAgICAgICAgICAgPC9kaXY+
CiAgICAgICAgICAgICAgICAgICAgICAgIDxzcGFuIHN0eWxlPSJkaXNwbGF5Om5vbmU7Ij4m
bmJzcDs8L3NwYW4+CiAgICAgICAgICAgICAgICAgICAgICAgIDxkaXYgaWQ9InlncnBzLXlp
di0xOTM2NDEwODU3eWdycHMteWl2LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3MDk2OHlncnBz
LXlpdi0xMjY1ODU4NTd5Z3Jwcy15aXYtMTM3NjExNTIxOXlncnAtdGV4dCI+CiAgICAgICAg
ICAgICAgICAgICAgICAgICAgPHA+IDwvcD4KICAgICAgICAgICAgICAgICAgICAgICAgICA8
cD4mbmJzcDtNYXkgYmUsIGJ1dCBpbiAxMjAtQ2VsbCB5b3UgaGF2ZSBzb21lCiAgICAgICAg
ICAgICAgICAgICAgICAgICAgICBzZWFyY2ggdG9vbHMuIEluIDM2LWNvbG9yIHRpbGVzIHRo
ZXJlIGlzCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYW55IHNpbWlsYXIgY29sb3Jz
IHRoYXQgbWFrZXMgZGlmZmljdWx0CiAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWFy
Y2hpbmcgb2YgdGhlIGNvcnJlY3QgdGlsZSAoZXZlbiB3aGVuIHlvdQogICAgICAgICAgICAg
ICAgICAgICAgICAgICAgbWFrZSBvbmUgZmFjZSB3aGl0ZSBhbmQgYWxsIG90aGVycyBkYXJr
KS4KICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBpZWNlcyBvZiBGMTowOjAgYXJlIHZl
cnkgdGhpbiwmbmJzcDttb3N0IG9mIHRoZW0KICAgICAgICAgICAgICAgICAgICAgICAgICAg
IGFyZSBjbG9zZSB0byBib3VuZGFyeSwmbmJzcDtzbyB5b3UgZG9uJiMzOTt0IGV2ZW4gc2Vl
CiAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGVtIGFsbC4mbmJzcDs8L3A+CiAgICAg
ICAgICAgICAgICAgICAgICAgICAgPHA+VG9wb2xvZ3kgb2YgezEwLDN9LCAzNkMgaXMgbm90
IHZlcnkgZWFzeQogICAgICAgICAgICAgICAgICAgICAgICAgICAgKGFjdHVhbGx5LCBJIGRv
biYjMzk7dCB1bmRlcnN0YW5kIGl0IGF0IGFsbCkuCiAgICAgICAgICAgICAgICAgICAgICAg
ICAgICBXaGVuIEkgbG9vayBmb3IgdGhlIHRpbGUsIEkmIzM5O20gbm90IGFsd2F5cwogICAg
ICAgICAgICAgICAgICAgICAgICAgICAgc3VyZSB0aGF0IG15IHNlYXJjaCBjb3ZlcnMgd2hv
bGUgZnVuZGFtZW50YWwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFyZWEsIHNvIEkg
Y2FuIGdvIG92ZXIgdGhlIHNhbWUgcGFydCBhZ2FpbgogICAgICAgICAgICAgICAgICAgICAg
ICAgICAgYW5kIGFnYWluLiZuYnNwO0FuZCZuYnNwO3RoZXJlJm5ic3A7YXJlJm5ic3A7cHJv
YmxlbXMgd2l0aAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZmluZGluZyBhIHdheSBm
b3ImbmJzcDt0aWxlcyZuYnNwO3RoYXQgZG9lc24mIzM5O3QgZGlzdHVyYgogICAgICAgICAg
ICAgICAgICAgICAgICAgICAgYWxyZWFkeSBzb2x2ZWQgcGFydHMuPC9wPgogICAgICAgICAg
ICAgICAgICAgICAgICAgIDxwPjxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICA8L3A+
CiAgICAgICAgICAgICAgICAgICAgICAgICAgPHA+QW5kcmV5PC9wPgogICAgICAgICAgICAg
ICAgICAgICAgICAgIDxkaXYgY2xhc3M9InlncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2
LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3MDk2OHlncnBzLXlpdi0xMjY1ODU4NTd5Z3Jwcy15
aXYtMTM3NjExNTIxOXlncm91cHMtcXVvdGVkIj48YnI+CiAgICAgICAgICAgICAgICAgICAg
ICAgICAgICA8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAtLS1JbiA8YSByZWw9
Im5vZm9sbG93IiBjbGFzcz0ieWdycHMteWl2LTE5MzY0MTA4NTd5Z3Jwcy15aXYtMzEzNTc1
MTd5Z3Jwcy15aXYtMzA0ODcwOTY4bW96LXR4dC1saW5rLWFiYnJldmlhdGVkIiB0YXJnZXQ9
Il9ibGFuayIgaHJlZj0ibWFpbHRvOjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20iPjREX0N1
YmluZ0B5YWhvb2dyb3Vwcy5jb208L2E+LAogICAgICAgICAgICAgICAgICAgICAgICAgICAg
PGEgcmVsPSJub2ZvbGxvdyIgY2xhc3M9InlncnBzLXlpdi0xOTM2NDEwODU3eWdycHMteWl2
LTMxMzU3NTE3eWdycHMteWl2LTMwNDg3MDk2OG1vei10eHQtbGluay1yZmMyMzk2RSIgdGFy
Z2V0PSJfYmxhbmsiIGhyZWY9Im1haWx0bzptZWxpbmRhQC4uLiI+Jmx0O21lbGluZGFALi4u
Jmd0OzwvYT4gd3JvdGU6PGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgPGJyPgog
ICAgICAgICAgICAgICAgICAgICAgICAgICAgPGRpdiBpZD0ieWdycHMteWl2LTE5MzY0MTA4
NTd5Z3Jwcy15aXYtMzEzNTc1MTd5Z3Jwcy15aXYtMzA0ODcwOTY4eWdycHMteWl2LTEyNjU4
NTg1N3lncnBzLXlpdi0xMzc2MTE1MjE5eWdycHMteWl2LTEzMjU4ODk3MDYiPldoYXQKICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgYWJvdXQgaXQgaXMgZGlmZmljdWx0PyBJIHdv
dWxkIGd1ZXNzIHRoYXQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9yZSBjb2xv
cnMgbWFrZXMgaXQgbW9yZSB0ZWRpb3VzIGJ1dCBub3QKICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgaGFyZGVyLCBzaW1pbGFyIHRvIDNeNCB2ZXJzdXMgMTIwLUNlbGwuPGJyPgog
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAtTWVsaW5kYTxicj4KICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8
ZGl2IGNsYXNzPSJ5Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxN3lncnBz
LXlpdi0zMDQ4NzA5Njh5Z3Jwcy15aXYtMTI2NTg1ODU3eWdycHMteWl2LTEzNzYxMTUyMTl5
Z3Jwcy15aXYtMTMyNTg4OTcwNm1vei1jaXRlLXByZWZpeCI+T24KICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAxMS8xNS8yMDEzIDE6NDQgUE0sIDxhIHJlbD0ibm9mb2xsb3ci
IGNsYXNzPSJ5Z3Jwcy15aXYtMTkzNjQxMDg1N3lncnBzLXlpdi0zMTM1NzUxN3lncnBzLXlp
di0zMDQ4NzA5Njh5Z3Jwcy15aXYtMTI2NTg1ODU3eWdycHMteWl2LTEzNzYxMTUyMTl5Z3Jw
cy15aXYtMTMyNTg4OTcwNm1vei10eHQtbGluay1hYmJyZXZpYXRlZCIgdGFyZ2V0PSJfYmxh
bmsiIGhyZWY9Im1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4iPmFuZHJleWFzdHJlbGluQC4u
LjwvYT4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3cm90ZTo8YnI+CiAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICA8YmxvY2txdW90ZT48c3Bhbj4KICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgIDxibG9ja3F1b3RlIHR5cGU9ImNpdGUiPgogICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICA8cD5JJiMzOTt2ZSBzb2x2ZWQgezEwLDN9LCAzNkMsIEY6MDowOjEu
CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSXQgd2FzIGRpZmZpY3Vs
dCAtIGl0IGhhcyB0b28gbWFueQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgIGNvbG9ycy4gVG90YWwgY291bnQgaXMgMjUxOAogICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgIHR3aXN0cy48L3A+CiAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgIDxwPjxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
PC9wPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8cD5BbmRyZXk8L3A+
CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8L2Jsb2NrcXVvdGU+CiAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8YnI+CiAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgPC9zcGFuPjwvYmxvY2txdW90ZT4KICAgICAgICAgICAgICAgICAgICAg
ICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAg
ICAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICAgICAgICAgIDwvYmxvY2tx
dW90ZT4KICAgICAgICAgICAgICAgICAgICA8L3NwYW4+PC9ibG9ja3F1b3RlPgogICAgICAg
ICAgICAgICAgPC9kaXY+CiAgICAgICAgICAgICAgPC9zcGFuPjwvYmxvY2txdW90ZT4KICAg
ICAgICAgIDwvZGl2PgogICAgICAgIDwvZGl2PgogICAgICA8L2Rpdj4KICAgICAgCiAgICAg
IDxkaXYgc3R5bGU9ImNvbG9yOndoaXRlO2NsZWFyOmJvdGg7Ij48L2Rpdj4KICAgIDwvYmxv
Y2txdW90ZT4KICAgIDxicj4KICAKCgoKCgoKPGRpdiBzdHlsZT0iY29sb3I6d2hpdGU7Y2xl
YXI6Ym90aDsiPjwvZGl2PgoKCjwvZGl2PjwvYmxvY2txdW90ZT48L2Rpdj4gICAgICAgICAg
ICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIDwvc3Bhbj48L2Jsb2Nr
cXVvdGU+PC9kaXY+PC9kaXY+ICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg
ICAgICAgICAgICAgICA8L3NwYW4+PC9ibG9ja3F1b3RlPjwvZGl2PjwvZGl2PjwvZGl2Pg==

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--




From: Roice Nelson <roice3@gmail.com>
Date: Mon, 18 Nov 2013 11:01:31 -0600
Subject: Re: [MC4D] RE: New puzzles



--089e01175e7de4593704eb767f8e
Content-Type: text/plain; charset=ISO-8859-1

Hi Andrey,

Thanks for your observation about this. To get the "mathematically pure"
behavior you are wanting, we can add an additional identification to each
of these puzzles, one that is a rotation only (no reflections). We can
effectively get that by marking EdgeSet 0, and using the appropriate
EndRotation... 4 for {8,3} and 5 for {10,3}.

Because of the solutions listed in the table, there is the question of
whether to edit the existing puzzles or add new ones. The existing
definitions are valid configurations too, just with a different topology.
But they are similar enough that I'm thinking we wouldn't want separate
definitions with only this difference.

If it is ok with you and others, I will just change the behavior of the
existing puzzles and not worry about the table, but if anyone disagrees
please let me know. I'll push the change out at the same time as the
addition of all the new colorings you've been making.

Thanks again,
Roice



On Sun, Nov 17, 2013 at 3:22 PM, wrote:

>
>
> Roice,
>
> something is wrong with {10,3} 6C edge-rotated puzzles. When I select
> some edge, I expect that edges on opposite sides of its decagons will be
> selected too (because mathematically they are the same). But that edges
> remain non-selected. Same is true for vertex-rotated 6C, and also for
> {10,3} 12color.
>
> Is there something missing in puzzle description?
>
>
> I see the same in {8,3} 6C... and I don't like it because there are
> solutions of these puzzles in the table (including some of my own ones)...
> Looks like we solved puzzles that are not as "mathematically pure" as they
> should be.
>
> Andrey
>
>
> ---In 4d_cubing@yahoogroups.com, wrote:
>
> {7,3} F0.4:0:1 F0.8:0:1 puzzle solved!
>
> It is hyperbolic equivalent of "gigaminx" - there are two layers of
> rotation at each face. Method of solving is almost the same: I start with
> "subedge" 1-color pieces, then combine pieces at each edge, solve puzzle
> like classic Klein Quadric and at last put "subcorners" to correct place.
> Most problems are with the second stage - there are 84 edges, and it's very
> difficult to find parts of the same edge. I did it by collecting all edge
> parts with some color around one center and working with them (nice feeling
> - when you can freely rotate almost all faces and know that you will not
> spoil anything by that).
>
> Total twist count - 7558. Maximal operation length - 24 (for rotating 3
> corners on the third stage), other operations are not longer than 8 twists.
>
>
> Andrey
>
>
> ---In 4d_cubing@yahoogroups.com, wrote:
>
> Yeah, awesome!
>
> Looks like another crystal cube order may be happening :D
>
> (sent from my phone)
>
> On Nov 17, 2013, at 1:57 AM, Melinda Green wrote:
>
> Nice.
>
> On 11/16/2013 7:02 PM, andreyastrelin@... wrote:
>
> 100 puzzles solved :)
>
>
> Andrey
>
>
> ---In 4d_cubing@yahoogroups.com, wrote:
>
> {10,3} 18C F0.67:0:1 solved. 2680 twists.
>
> It was easy enough (if you know how to handle pieces with wrong
> orientation).
>
>
> Andrey
>
>
> ---In 4D_Cubing@yahoogroups.com, wrote:
>
>
> I'am playing with MT hyp {10,3],18C F0:0:1(not F1:0:0). 300 twists for 4
> of the 18 colors so far. I don't care for the number of twists and use 3
> cycles all the way even early in order to not disturb anything. I also
> complete colors before starting a new one. So this puzzle is not so hard to
> solve but funny.
>
> I will complete wiki for the 60 new puzzles and effectively aim for the
> new 50%.
>
> Ed
>
>
> ----- Original Message -----
> *From:* andreyastrelin@...
> *To:* 4D_Cubing@yahoogroups.com
> *Sent:* Saturday, November 16, 2013 4:02 AM
> *Subject:* RE: Re: [MC4D] New puzzles
>
>
>
> May be, but in 120-Cell you have some search tools. In 36-color tiles
> there is many similar colors that makes difficult searching of the correct
> tile (even when you make one face white and all others dark). Pieces of
> F1:0:0 are very thin, most of them are close to boundary, so you don't even
> see them all.
>
> Topology of {10,3}, 36C is not very easy (actually, I don't understand it
> at all). When I look for the tile, I'm not always sure that my search
> covers whole fundamental area, so I can go over the same part again and
> again. And there are problems with finding a way for tiles that doesn't
> disturb already solved parts.
>
>
> Andrey
>
>
> ---In 4D_Cubing@yahoogroups.com, wrote:
>
> What about it is difficult? I would guess that more colors makes it more
> tedious but not harder, similar to 3^4 versus 120-Cell.
> -Melinda
>
> On 11/15/2013 1:44 PM, andreyastrelin@... wrote:
>
> I've solved {10,3}, 36C, F:0:0:1. It was difficult - it has too many
> colors. Total count is 2518 twists.
>
>
> Andrey
>
>
>
>
>
>
>

--089e01175e7de4593704eb767f8e
Content-Type: text/html; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable

Hi Andrey,

Thanks for your observation =
about this. =A0To get the "mathematically pure" behavior you are =
wanting, we can add an additional identification to each of these puzzles, =
one that is a rotation only (no reflections). =A0We can effectively get tha=
t by marking EdgeSet 0, and using the appropriate EndRotation... 4 for {8,3=
} and 5 for {10,3}.


Because of the solutions listed in the table, there is the q=
uestion of whether to edit the existing puzzles or add new ones. =A0The exi=
sting definitions are valid configurations too, just with a different topol=
ogy. =A0But they are similar enough that I'm thinking we wouldn't w=
ant separate definitions with only this difference.


If it is ok with you and others, I will just change the=
behavior of the existing puzzles and not worry about the table, but if any=
one disagrees please let me know. =A0I'll push the change out at the sa=
me time as the addition of all the new colorings you've been making.iv>

Thanks again,
Roice

>


On Sun=
, Nov 17, 2013 at 3:22 PM, <strelin@yahoo.com" target=3D"_blank">andreyastrelin@yahoo.com>> wrote:

x #ccc solid;padding-left:1ex">






=20=20=20=20=20=20=20=20

















Roice,

=A0 something is wrong with {10,3} 6C edge-rotated puzzles.=
When I select some edge, I expect that edges on opposite sides=A0of its de=
cagons=A0will be selected too (because mathematically they are the same). B=
ut that edges remain non-selected. Same is true for vertex-rotated 6C, and =
also for {10,3} 12color.


=A0 Is there=A0something missing=A0in puzzle description?


=

=A0 I see the same in {8,3} 6C... and I don't like it because there =
are solutions of these puzzles in the table (including some of my own=A0one=
s)... Looks like we solved puzzles that are not as "mathematically pur=
e" as they should be.


=A0 Andrey



---In to:4d_cubing@yahoogroups.com" target=3D"_blank">4d_cubing@yahoogroups.coma>, <andreyastrelin@...> wrote:

{7,3} F0.4:0:1 F0.8:0:=
1=A0puzzle solved!


It is hyperbolic equivalent of "gigaminx" - there are two laye=
rs of rotation at each face. Method of solving is almost the same: I start =
with "subedge" 1-color pieces, then combine pieces at each edge, =
solve puzzle like classic Klein Quadric and=A0at last=A0put "subcorner=
s" to=A0correct place. Most problems are with the second stage - there=
are 84 edges, and it's very difficult to find parts of the same edge. =
I did it by collecting all edge parts with some color around one center and=
working with them (nice feeling - when you can freely rotate almost all fa=
ces=A0and know that you will not spoil anything by that).


=A0 Total twist count - 7558.=A0Maximal operation length - 24 (for rotat=
ing 3 corners on the third stage), other operations are not longer than 8 t=
wists.


Andrey=A0=A0



--=
-In
4d_cubin=
g@yahoogroups.com
, <roice3@...> wrote:


Yeah, awesome!

Looks like another cr=
ystal cube order may be happening :D

(sent from my phone)
div>

On Nov 17, 2013, at 1:57 AM, Melinda =
Green <>melinda@...> wrote:









=20=20=20=20=20=20=20=20

=20=20
=20=20=20=20
=20=20
=20=20






Nice.



On 11/16/2013 7:02 PM,
nk">andreyastrelin@... wrote:



=20=20=20=20=20=20
=20=20=20=20=20=20

100 puzzles solved :)=A0





Andrey






---In target=3D"_blank">4d_cubing@yahoogroups.com, =3D"mailto:andreyastrelin@..." target=3D"_blank"><andreyastrelin@...>=

wrote:




{10,3} 18C F0.67:0:1 solved.=A02680 twists.


It was easy enough (if you know how to handle pieces with
wrong orientation).





Andrey






---In Cubing@yahoogroups.com" target=3D"_blank">4D_Cubing@yahoogroups.com,
=3D"_blank"><ed.baumann@...> wrote:




I'am playing with MT
hyp {10,3],18C F0:0:1(not F1:0:0). 300 twists for
4 of the 18 colors so far. I don't care for the
number of twists and use 3 cycles all the way even
early in order to not disturb anything. I also
complete colors before starting a new one. So this
puzzle is not so hard to solve but funny.
>
=A0

I will complete wiki
for the 60 new puzzles and effectively aim for the
new 50%.

=A0

Ed

=A0


px;margin-right:0px;margin-left:5px;border-left-color:rgb(0,0,0);border-lef=
t-width:2px;border-left-style:solid">
st:none;font-stretch:normal">-----
Original Message -----

/normal arial;font-size-adjust:none;font-stretch:normal">From:
href=3D"mailto:andreyastrelin@..." target=3D"_blank">andreyastrelin@...


st:none;font-stretch:normal">Sent:
Saturday, November 16, 2013 4:02 AM

st:none;font-stretch:normal">Subject:
RE: Re: [MC4D] New puzzles




=A0


=A0May be, but in 120-Cell you have some
search tools. In 36-color tiles there is
many similar colors that makes difficult
searching of the correct tile (even when you
make one face white and all others dark).
Pieces of F1:0:0 are very thin,=A0most of them
are close to boundary,=A0so you don't even =
see
them all.=A0


Topology of {10,3}, 36C is not very easy
(actually, I don't understand it at all).
When I look for the tile, I'm not always
sure that my search covers whole fundamental
area, so I can go over the same part again
and again.=A0And=A0there=A0are=A0problems with
finding a way for=A0tiles=A0that doesn't di=
sturb
already solved parts.





Andrey






---In ing@yahoogroups.com" target=3D"_blank">4D_Cubing@yahoogroups.com,
target=3D"_blank"><melinda@...> wrote:



What
about it is difficult? I would guess that
more colors makes it more tedious but not
harder, similar to 3^4 versus 120-Cell.

-Melinda






I've solved {10,3}, 36C, F:0:0:1=
.
It was difficult - it has too many
colors. Total count is 2518
twists.





Andrey
















=20=20=20=20=20=20




=20=20









=
=20
=
=20=20=20=20=20=20























--089e01175e7de4593704eb767f8e--




From: <andreyastrelin@yahoo.com>
Date: 18 Nov 2013 11:48:06 -0800
Subject: RE: Re: [MC4D] RE: New puzzles



--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: base64

Um9pY2UsDQogICBJIHRoaW5rLCBpdCdzIGJldHRlciB0byBhZGQgbmV3IHB1enpsZXMgd2l0
aCBhZGRpdGlvbmFsIGlkZW50aWZpY2F0aW9ucyBvbiB2ZXJ0ZXgtIGFuZCBlZGdlLWNlbnRl
cmVkIHR3aXN0cy4gQmVjYXVzZSB0aGV5IGFyZSByZWFsbHkgZGlmZmVyZW50IHB1enpsZXMs
IGFuZCBzb21lIG9mIHRoZW0gbWF5IGJlIG11Y2ggbW9yZSBkaWZmaWN1bHQgdGhhbiBvbGQg
b25lcy4NCiAgIEknbSBsb29raW5nIGF0IHs4LDR9IDkgY29sb3JzLCBhbmQgY2FuJ3QgdW5k
ZXJzdGFuZCBpdC4gSW4gZmFjZS1jZW50ZXJlZCBwdXp6bGUgaXQgd29ya3MgbGlrZSBub24t
b3JpZW50ZWQgbm9uLXVuaWZvcm0gcHV6emxlIHdpdGggc29tZSB0d28tc2lkZSBlZGdlcy4g
SW4gdmVydGV4LWNlbnRlcmVkIHZhcmlhbnQgc29tZSB2ZXJ0aWNlcyBvZiB0aGUgc2FtZSBz
dHJ1Y3R1cmUgYXJlIGlkZW50aWZpZWQsIGJ1dCBzb21ldGltZXMgdGhlcmUgaXMgb25seSBo
YWxmIG9mIHRoZW0uLi4gYW5kIHRoZSBpZGVudGlmaWVkIG9uZXMgZG9uJ3QgYWxsIGhhdmUg
dGhlIHNhbWUgb3JpZW50YXRpb24uDQogICBJcyBpdCBwb3NzaWJsZSB0byBhZGQgaWRlbnRp
ZmljYXRpb24gd2l0aCAiaW4gcGxhY2UgcmVmbGVjdGlvbiIgYW5kICJlbmQgcm90YXRpb24i
LCBidXQgd2l0aG91dCBleHRyYSByb3RhdGlvbnM/IA0KIA0KDQogQW5kcmV5DQogDQoNCi0t
LUluIDREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sIDxyb2ljZTNALi4uPiB3cm90ZToNCg0K
IEhpIEFuZHJleSwgDQoNCiBUaGFua3MgZm9yIHlvdXIgb2JzZXJ2YXRpb24gYWJvdXQgdGhp
cy4gIFRvIGdldCB0aGUgIm1hdGhlbWF0aWNhbGx5IHB1cmUiIGJlaGF2aW9yIHlvdSBhcmUg
d2FudGluZywgd2UgY2FuIGFkZCBhbiBhZGRpdGlvbmFsIGlkZW50aWZpY2F0aW9uIHRvIGVh
Y2ggb2YgdGhlc2UgcHV6emxlcywgb25lIHRoYXQgaXMgYSByb3RhdGlvbiBvbmx5IChubyBy
ZWZsZWN0aW9ucykuICBXZSBjYW4gZWZmZWN0aXZlbHkgZ2V0IHRoYXQgYnkgbWFya2luZyBF
ZGdlU2V0IDAsIGFuZCB1c2luZyB0aGUgYXBwcm9wcmlhdGUgRW5kUm90YXRpb24uLi4gNCBm
b3IgezgsM30gYW5kIDUgZm9yIHsxMCwzfS4gDQoNCiBCZWNhdXNlIG9mIHRoZSBzb2x1dGlv
bnMgbGlzdGVkIGluIHRoZSB0YWJsZSwgdGhlcmUgaXMgdGhlIHF1ZXN0aW9uIG9mIHdoZXRo
ZXIgdG8gZWRpdCB0aGUgZXhpc3RpbmcgcHV6emxlcyBvciBhZGQgbmV3IG9uZXMuICBUaGUg
ZXhpc3RpbmcgZGVmaW5pdGlvbnMgYXJlIHZhbGlkIGNvbmZpZ3VyYXRpb25zIHRvbywganVz
dCB3aXRoIGEgZGlmZmVyZW50IHRvcG9sb2d5LiAgQnV0IHRoZXkgYXJlIHNpbWlsYXIgZW5v
dWdoIHRoYXQgSSdtIHRoaW5raW5nIHdlIHdvdWxkbid0IHdhbnQgc2VwYXJhdGUgZGVmaW5p
dGlvbnMgd2l0aCBvbmx5IHRoaXMgZGlmZmVyZW5jZS4NCiANCg0KIElmIGl0IGlzIG9rIHdp
dGggeW91IGFuZCBvdGhlcnMsIEkgd2lsbCBqdXN0IGNoYW5nZSB0aGUgYmVoYXZpb3Igb2Yg
dGhlIGV4aXN0aW5nIHB1enpsZXMgYW5kIG5vdCB3b3JyeSBhYm91dCB0aGUgdGFibGUsIGJ1
dCBpZiBhbnlvbmUgZGlzYWdyZWVzIHBsZWFzZSBsZXQgbWUga25vdy4gIEknbGwgcHVzaCB0
aGUgY2hhbmdlIG91dCBhdCB0aGUgc2FtZSB0aW1lIGFzIHRoZSBhZGRpdGlvbiBvZiBhbGwg
dGhlIG5ldyBjb2xvcmluZ3MgeW91J3ZlIGJlZW4gbWFraW5nLg0KIA0KDQogVGhhbmtzIGFn
YWluLA0KIFJvaWNlDQogDQoNCg0KDQogDQoNCiBPbiBTdW4sIE5vdiAxNywgMjAxMyBhdCAz
OjIyIFBNLCA8YW5kcmV5YXN0cmVsaW5ALi4uIG1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4+
IHdyb3RlOg0KIA0KDQogUm9pY2UsDQogICBzb21ldGhpbmcgaXMgd3Jvbmcgd2l0aCB7MTAs
M30gNkMgZWRnZS1yb3RhdGVkIHB1enpsZXMuIFdoZW4gSSBzZWxlY3Qgc29tZSBlZGdlLCBJ
IGV4cGVjdCB0aGF0IGVkZ2VzIG9uIG9wcG9zaXRlIHNpZGVzIG9mIGl0cyBkZWNhZ29ucyB3
aWxsIGJlIHNlbGVjdGVkIHRvbyAoYmVjYXVzZSBtYXRoZW1hdGljYWxseSB0aGV5IGFyZSB0
aGUgc2FtZSkuIEJ1dCB0aGF0IGVkZ2VzIHJlbWFpbiBub24tc2VsZWN0ZWQuIFNhbWUgaXMg
dHJ1ZSBmb3IgdmVydGV4LXJvdGF0ZWQgNkMsIGFuZCBhbHNvIGZvciB7MTAsM30gMTJjb2xv
ci4NCiAgIElzIHRoZXJlIHNvbWV0aGluZyBtaXNzaW5nIGluIHB1enpsZSBkZXNjcmlwdGlv
bj8NCiANCg0KICAgSSBzZWUgdGhlIHNhbWUgaW4gezgsM30gNkMuLi4gYW5kIEkgZG9uJ3Qg
bGlrZSBpdCBiZWNhdXNlIHRoZXJlIGFyZSBzb2x1dGlvbnMgb2YgdGhlc2UgcHV6emxlcyBp
biB0aGUgdGFibGUgKGluY2x1ZGluZyBzb21lIG9mIG15IG93biBvbmVzKS4uLiBMb29rcyBs
aWtlIHdlIHNvbHZlZCBwdXp6bGVzIHRoYXQgYXJlIG5vdCBhcyAibWF0aGVtYXRpY2FsbHkg
cHVyZSIgYXMgdGhleSBzaG91bGQgYmUuDQogICBBbmRyZXkNCiANCg0KLS0tSW4gNGRfY3Vi
aW5nQHlhaG9vZ3JvdXBzLmNvbSBtYWlsdG86NGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwg
PGFuZHJleWFzdHJlbGluQC4uLj4gd3JvdGU6DQoNCiB7NywzfSBGMC40OjA6MSBGMC44OjA6
MSBwdXp6bGUgc29sdmVkIQ0KIEl0IGlzIGh5cGVyYm9saWMgZXF1aXZhbGVudCBvZiAiZ2ln
YW1pbngiIC0gdGhlcmUgYXJlIHR3byBsYXllcnMgb2Ygcm90YXRpb24gYXQgZWFjaCBmYWNl
LiBNZXRob2Qgb2Ygc29sdmluZyBpcyBhbG1vc3QgdGhlIHNhbWU6IEkgc3RhcnQgd2l0aCAi
c3ViZWRnZSIgMS1jb2xvciBwaWVjZXMsIHRoZW4gY29tYmluZSBwaWVjZXMgYXQgZWFjaCBl
ZGdlLCBzb2x2ZSBwdXp6bGUgbGlrZSBjbGFzc2ljIEtsZWluIFF1YWRyaWMgYW5kIGF0IGxh
c3QgcHV0ICJzdWJjb3JuZXJzIiB0byBjb3JyZWN0IHBsYWNlLiBNb3N0IHByb2JsZW1zIGFy
ZSB3aXRoIHRoZSBzZWNvbmQgc3RhZ2UgLSB0aGVyZSBhcmUgODQgZWRnZXMsIGFuZCBpdCdz
IHZlcnkgZGlmZmljdWx0IHRvIGZpbmQgcGFydHMgb2YgdGhlIHNhbWUgZWRnZS4gSSBkaWQg
aXQgYnkgY29sbGVjdGluZyBhbGwgZWRnZSBwYXJ0cyB3aXRoIHNvbWUgY29sb3IgYXJvdW5k
IG9uZSBjZW50ZXIgYW5kIHdvcmtpbmcgd2l0aCB0aGVtIChuaWNlIGZlZWxpbmcgLSB3aGVu
IHlvdSBjYW4gZnJlZWx5IHJvdGF0ZSBhbG1vc3QgYWxsIGZhY2VzIGFuZCBrbm93IHRoYXQg
eW91IHdpbGwgbm90IHNwb2lsIGFueXRoaW5nIGJ5IHRoYXQpLg0KICAgVG90YWwgdHdpc3Qg
Y291bnQgLSA3NTU4LiBNYXhpbWFsIG9wZXJhdGlvbiBsZW5ndGggLSAyNCAoZm9yIHJvdGF0
aW5nIDMgY29ybmVycyBvbiB0aGUgdGhpcmQgc3RhZ2UpLCBvdGhlciBvcGVyYXRpb25zIGFy
ZSBub3QgbG9uZ2VyIHRoYW4gOCB0d2lzdHMuDQogDQoNCiBBbmRyZXkgIA0KIA0KDQogLS0t
SW4gNGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSBtYWlsdG86NGRfY3ViaW5nQHlhaG9vZ3Jv
dXBzLmNvbSwgPHJvaWNlM0AuLi4+IHdyb3RlOg0KIA0KIFllYWgsIGF3ZXNvbWUhDQogDQoN
CiBMb29rcyBsaWtlIGFub3RoZXIgY3J5c3RhbCBjdWJlIG9yZGVyIG1heSBiZSBoYXBwZW5p
bmcgOkQNCg0KIChzZW50IGZyb20gbXkgcGhvbmUpDQoNCg0KIA0KIE9uIE5vdiAxNywgMjAx
MywgYXQgMTo1NyBBTSwgTWVsaW5kYSBHcmVlbiA8bWVsaW5kYUAuLi4gbWFpbHRvOm1lbGlu
ZGFALi4uPiB3cm90ZToNCiANCg0KIE5pY2UuDQogDQogT24gMTEvMTYvMjAxMyA3OjAyIFBN
LCBhbmRyZXlhc3RyZWxpbkAuLi4gbWFpbHRvOmFuZHJleWFzdHJlbGluQC4uLiB3cm90ZToN
CiANCiAxMDAgcHV6emxlcyBzb2x2ZWQgOikgDQogDQogDQogQW5kcmV5DQogDQogDQogLS0t
SW4gNGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSBtYWlsdG86NGRfY3ViaW5nQHlhaG9vZ3Jv
dXBzLmNvbSwgPGFuZHJleWFzdHJlbGluQC4uLj4gbWFpbHRvOmFuZHJleWFzdHJlbGluQC4u
LiB3cm90ZToNCiANCiB7MTAsM30gMThDIEYwLjY3OjA6MSBzb2x2ZWQuIDI2ODAgdHdpc3Rz
Lg0KIEl0IHdhcyBlYXN5IGVub3VnaCAoaWYgeW91IGtub3cgaG93IHRvIGhhbmRsZSBwaWVj
ZXMgd2l0aCB3cm9uZyBvcmllbnRhdGlvbikuDQogDQogDQogQW5kcmV5DQogDQogDQogLS0t
SW4gNERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSBtYWlsdG86NERfQ3ViaW5nQHlhaG9vZ3Jv
dXBzLmNvbSwgPGVkLmJhdW1hbm5ALi4uPiBtYWlsdG86ZWQuYmF1bWFubkAuLi4gd3JvdGU6
DQogDQogSSdhbSBwbGF5aW5nIHdpdGggTVQgaHlwIHsxMCwzXSwxOEMgRjA6MDoxKG5vdCBG
MTowOjApLiAzMDAgdHdpc3RzIGZvciA0IG9mIHRoZSAxOCBjb2xvcnMgc28gZmFyLiBJIGRv
bid0IGNhcmUgZm9yIHRoZSBudW1iZXIgb2YgdHdpc3RzIGFuZCB1c2UgMyBjeWNsZXMgYWxs
IHRoZSB3YXkgZXZlbiBlYXJseSBpbiBvcmRlciB0byBub3QgZGlzdHVyYiBhbnl0aGluZy4g
SSBhbHNvIGNvbXBsZXRlIGNvbG9ycyBiZWZvcmUgc3RhcnRpbmcgYSBuZXcgb25lLiBTbyB0
aGlzIHB1enpsZSBpcyBub3Qgc28gaGFyZCB0byBzb2x2ZSBidXQgZnVubnkuDQogIA0KIEkg
d2lsbCBjb21wbGV0ZSB3aWtpIGZvciB0aGUgNjAgbmV3IHB1enpsZXMgYW5kIGVmZmVjdGl2
ZWx5IGFpbSBmb3IgdGhlIG5ldyA1MCUuDQogIA0KIEVkDQogIA0KIC0tLS0tIE9yaWdpbmFs
IE1lc3NhZ2UgLS0tLS0gDQogRnJvbTogYW5kcmV5YXN0cmVsaW5ALi4uIG1haWx0bzphbmRy
ZXlhc3RyZWxpbkAuLi4gDQogVG86IDREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20gbWFpbHRv
OjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20gDQogU2VudDogU2F0dXJkYXksIE5vdmVtYmVy
IDE2LCAyMDEzIDQ6MDIgQU0NCiBTdWJqZWN0OiBSRTogUmU6IFtNQzREXSBOZXcgcHV6emxl
cw0KIA0KIA0KICAgDQogIE1heSBiZSwgYnV0IGluIDEyMC1DZWxsIHlvdSBoYXZlIHNvbWUg
c2VhcmNoIHRvb2xzLiBJbiAzNi1jb2xvciB0aWxlcyB0aGVyZSBpcyBtYW55IHNpbWlsYXIg
Y29sb3JzIHRoYXQgbWFrZXMgZGlmZmljdWx0IHNlYXJjaGluZyBvZiB0aGUgY29ycmVjdCB0
aWxlIChldmVuIHdoZW4geW91IG1ha2Ugb25lIGZhY2Ugd2hpdGUgYW5kIGFsbCBvdGhlcnMg
ZGFyaykuIFBpZWNlcyBvZiBGMTowOjAgYXJlIHZlcnkgdGhpbiwgbW9zdCBvZiB0aGVtIGFy
ZSBjbG9zZSB0byBib3VuZGFyeSwgc28geW91IGRvbid0IGV2ZW4gc2VlIHRoZW0gYWxsLiAN
CiBUb3BvbG9neSBvZiB7MTAsM30sIDM2QyBpcyBub3QgdmVyeSBlYXN5IChhY3R1YWxseSwg
SSBkb24ndCB1bmRlcnN0YW5kIGl0IGF0IGFsbCkuIFdoZW4gSSBsb29rIGZvciB0aGUgdGls
ZSwgSSdtIG5vdCBhbHdheXMgc3VyZSB0aGF0IG15IHNlYXJjaCBjb3ZlcnMgd2hvbGUgZnVu
ZGFtZW50YWwgYXJlYSwgc28gSSBjYW4gZ28gb3ZlciB0aGUgc2FtZSBwYXJ0IGFnYWluIGFu
ZCBhZ2Fpbi4gQW5kIHRoZXJlIGFyZSBwcm9ibGVtcyB3aXRoIGZpbmRpbmcgYSB3YXkgZm9y
IHRpbGVzIHRoYXQgZG9lc24ndCBkaXN0dXJiIGFscmVhZHkgc29sdmVkIHBhcnRzLg0KIA0K
IA0KIEFuZHJleQ0KIA0KIA0KIC0tLUluIDREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20gbWFp
bHRvOjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20sIDxtZWxpbmRhQC4uLj4gbWFpbHRvOm1l
bGluZGFALi4uIHdyb3RlOg0KIA0KIFdoYXQgYWJvdXQgaXQgaXMgZGlmZmljdWx0PyBJIHdv
dWxkIGd1ZXNzIHRoYXQgbW9yZSBjb2xvcnMgbWFrZXMgaXQgbW9yZSB0ZWRpb3VzIGJ1dCBu
b3QgaGFyZGVyLCBzaW1pbGFyIHRvIDNeNCB2ZXJzdXMgMTIwLUNlbGwuDQogLU1lbGluZGEN
CiANCiBPbiAxMS8xNS8yMDEzIDE6NDQgUE0sIGFuZHJleWFzdHJlbGluQC4uLiBtYWlsdG86
YW5kcmV5YXN0cmVsaW5ALi4uIHdyb3RlOg0KIA0KIEkndmUgc29sdmVkIHsxMCwzfSwgMzZD
LCBGOjA6MDoxLiBJdCB3YXMgZGlmZmljdWx0IC0gaXQgaGFzIHRvbyBtYW55IGNvbG9ycy4g
VG90YWwgY291bnQgaXMgMjUxOCB0d2lzdHMuDQogDQogDQogQW5kcmV5DQogDQogDQogDQog
DQogDQogDQogDQogDQogDQogDQogDQogDQoNCiANCg0KIA0KIA0KIA0KIA0KIA0KDQoNCiAN
Cg0KDQogDQoNCg==

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64

PHA+Um9pY2UsPC9wPjxwPiZuYnNwOyBJIHRoaW5rLCBpdCYjMzk7cyBiZXR0ZXIgdG8gYWRk
IG5ldyBwdXp6bGVzIHdpdGgmbmJzcDthZGRpdGlvbmFsJm5ic3A7aWRlbnRpZmljYXRpb25z
IG9uIHZlcnRleC0gYW5kIGVkZ2UtY2VudGVyZWQgdHdpc3RzLiBCZWNhdXNlIHRoZXkgYXJl
IHJlYWxseSBkaWZmZXJlbnQgcHV6emxlcywgYW5kIHNvbWUgb2YgdGhlbSBtYXkgYmUgbXVj
aCBtb3JlIGRpZmZpY3VsdCB0aGFuIG9sZCBvbmVzLjwvcD48cD4mbmJzcDsgSSYjMzk7bSBs
b29raW5nIGF0IHs4LDR9IDkgY29sb3JzLCBhbmQgY2FuJiMzOTt0IHVuZGVyc3RhbmQgaXQu
IEluIGZhY2UtY2VudGVyZWQmbmJzcDtwdXp6bGUgaXQgd29ya3MgbGlrZSBub24tb3JpZW50
ZWQgbm9uLXVuaWZvcm0mbmJzcDtwdXp6bGUmbmJzcDt3aXRoIHNvbWUgdHdvLXNpZGUgZWRn
ZXMuIEluIHZlcnRleC1jZW50ZXJlZCB2YXJpYW50IHNvbWUgdmVydGljZXMgb2YgdGhlIHNh
bWUgc3RydWN0dXJlIGFyZSBpZGVudGlmaWVkLCBidXQgc29tZXRpbWVzIHRoZXJlIGlzIG9u
bHkgaGFsZiBvZiB0aGVtLi4uIGFuZCB0aGUgaWRlbnRpZmllZCBvbmVzIGRvbiYjMzk7dCBh
bGwgaGF2ZSB0aGUgc2FtZSBvcmllbnRhdGlvbi48L3A+PHA+Jm5ic3A7IElzIGl0IHBvc3Np
YmxlIHRvIGFkZCBpZGVudGlmaWNhdGlvbiB3aXRoICZxdW90O2luIHBsYWNlIHJlZmxlY3Rp
b24mcXVvdDsmbmJzcDthbmQgJnF1b3Q7ZW5kIHJvdGF0aW9uJnF1b3Q7LCBidXQgd2l0aG91
dCBleHRyYSByb3RhdGlvbnM/Jm5ic3A7PC9wPjxwPjxicj48L3A+PHA+QW5kcmV5PC9wPiA8
ZGl2IGNsYXNzPSJ5Z3JvdXBzLXF1b3RlZCIgc3R5bGU9ImRpc3BsYXk6bm9uZTsiPjxicj48
YnI+LS0tSW4gNERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSwgJmx0O3JvaWNlM0AuLi4mZ3Q7
IHdyb3RlOjxicj48YnI+PGRpdiBpZD0ieWdycHMteWl2LTIwOTA2MjcwOTkiPjxkaXYgZGly
PSJsdHIiPkhpIEFuZHJleSw8ZGl2Pjxicj48L2Rpdj48ZGl2PlRoYW5rcyBmb3IgeW91ciBv
YnNlcnZhdGlvbiBhYm91dCB0aGlzLiAmbmJzcDtUbyBnZXQgdGhlICZxdW90O21hdGhlbWF0
aWNhbGx5IHB1cmUmcXVvdDsgYmVoYXZpb3IgeW91IGFyZSB3YW50aW5nLCB3ZSBjYW4gYWRk
IGFuIGFkZGl0aW9uYWwgaWRlbnRpZmljYXRpb24gdG8gZWFjaCBvZiB0aGVzZSBwdXp6bGVz
LCBvbmUgdGhhdCBpcyBhIHJvdGF0aW9uIG9ubHkgKG5vIHJlZmxlY3Rpb25zKS4gJm5ic3A7
V2UgY2FuIGVmZmVjdGl2ZWx5IGdldCB0aGF0IGJ5IG1hcmtpbmcgRWRnZVNldCAwLCBhbmQg
dXNpbmcgdGhlIGFwcHJvcHJpYXRlIEVuZFJvdGF0aW9uLi4uIDQgZm9yIHs4LDN9IGFuZCA1
IGZvciB7MTAsM30uPGRpdj4KPGJyPjwvZGl2PjxkaXY+QmVjYXVzZSBvZiB0aGUgc29sdXRp
b25zIGxpc3RlZCBpbiB0aGUgdGFibGUsIHRoZXJlIGlzIHRoZSBxdWVzdGlvbiBvZiB3aGV0
aGVyIHRvIGVkaXQgdGhlIGV4aXN0aW5nIHB1enpsZXMgb3IgYWRkIG5ldyBvbmVzLiAmbmJz
cDtUaGUgZXhpc3RpbmcgZGVmaW5pdGlvbnMgYXJlIHZhbGlkIGNvbmZpZ3VyYXRpb25zIHRv
bywganVzdCB3aXRoIGEgZGlmZmVyZW50IHRvcG9sb2d5LiAmbmJzcDtCdXQgdGhleSBhcmUg
c2ltaWxhciBlbm91Z2ggdGhhdCBJJiMzOTttIHRoaW5raW5nIHdlIHdvdWxkbiYjMzk7dCB3
YW50IHNlcGFyYXRlIGRlZmluaXRpb25zIHdpdGggb25seSB0aGlzIGRpZmZlcmVuY2UuPC9k
aXY+CjxkaXY+PGJyPjwvZGl2PjxkaXY+SWYgaXQgaXMgb2sgd2l0aCB5b3UgYW5kIG90aGVy
cywgSSB3aWxsIGp1c3QgY2hhbmdlIHRoZSBiZWhhdmlvciBvZiB0aGUgZXhpc3RpbmcgcHV6
emxlcyBhbmQgbm90IHdvcnJ5IGFib3V0IHRoZSB0YWJsZSwgYnV0IGlmIGFueW9uZSBkaXNh
Z3JlZXMgcGxlYXNlIGxldCBtZSBrbm93LiAmbmJzcDtJJiMzOTtsbCBwdXNoIHRoZSBjaGFu
Z2Ugb3V0IGF0IHRoZSBzYW1lIHRpbWUgYXMgdGhlIGFkZGl0aW9uIG9mIGFsbCB0aGUgbmV3
IGNvbG9yaW5ncyB5b3UmIzM5O3ZlIGJlZW4gbWFraW5nLjwvZGl2Pgo8ZGl2Pjxicj48L2Rp
dj48ZGl2PlRoYW5rcyBhZ2Fpbiw8L2Rpdj48ZGl2PlJvaWNlPC9kaXY+PGRpdj48YnI+PC9k
aXY+PC9kaXY+PC9kaXY+PGRpdiBjbGFzcz0ieWdycHMteWl2LTIwOTA2MjcwOTlnbWFpbF9l
eHRyYSI+PGJyPjxicj48YmxvY2txdW90ZT48c3Bhbj4gPGRpdiBjbGFzcz0ieWdycHMteWl2
LTIwOTA2MjcwOTlnbWFpbF9xdW90ZSI+T24gU3VuLCBOb3YgMTcsIDIwMTMgYXQgMzoyMiBQ
TSwgIDxzcGFuIGRpcj0ibHRyIj4mbHQ7PGEgcmVsPSJub2ZvbGxvdyIgdGFyZ2V0PSJfYmxh
bmsiIGhyZWY9Im1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4iPmFuZHJleWFzdHJlbGluQC4u
LjwvYT4mZ3Q7PC9zcGFuPiB3cm90ZTo8YnI+CjxibG9ja3F1b3RlIGNsYXNzPSJ5Z3Jwcy15
aXYtMjA5MDYyNzA5OWdtYWlsX3F1b3RlIiBzdHlsZT0ibWFyZ2luOjBweCAwcHggMHB4IDAu
OGV4O3BhZGRpbmctbGVmdDoxZXg7Ym9yZGVyLWxlZnQtY29sb3I6cmdiKDIwNCwgMjA0LCAy
MDQpO2JvcmRlci1sZWZ0LXdpZHRoOjFweDtib3JkZXItbGVmdC1zdHlsZTpzb2xpZDsiPgoK
CgoKCgogICAgICAgIAoKCgoKPGRpdj4KCgoKCgo8YnI+PGJyPgoKCgoKPHA+Um9pY2UsPC9w
PjxwPiZuYnNwOyBzb21ldGhpbmcgaXMgd3Jvbmcgd2l0aCB7MTAsM30gNkMgZWRnZS1yb3Rh
dGVkIHB1enpsZXMuIFdoZW4gSSBzZWxlY3Qgc29tZSBlZGdlLCBJIGV4cGVjdCB0aGF0IGVk
Z2VzIG9uIG9wcG9zaXRlIHNpZGVzJm5ic3A7b2YgaXRzIGRlY2Fnb25zJm5ic3A7d2lsbCBi
ZSBzZWxlY3RlZCB0b28gKGJlY2F1c2UgbWF0aGVtYXRpY2FsbHkgdGhleSBhcmUgdGhlIHNh
bWUpLiBCdXQgdGhhdCBlZGdlcyByZW1haW4gbm9uLXNlbGVjdGVkLiBTYW1lIGlzIHRydWUg
Zm9yIHZlcnRleC1yb3RhdGVkIDZDLCBhbmQgYWxzbyBmb3IgezEwLDN9IDEyY29sb3IuPC9w
Pgo8cD4mbmJzcDsgSXMgdGhlcmUmbmJzcDtzb21ldGhpbmcgbWlzc2luZyZuYnNwO2luIHB1
enpsZSBkZXNjcmlwdGlvbj88L3A+PHA+PGJyPjwvcD48cD4mbmJzcDsgSSBzZWUgdGhlIHNh
bWUgaW4gezgsM30gNkMuLi4gYW5kIEkgZG9uJiMzOTt0IGxpa2UgaXQgYmVjYXVzZSB0aGVy
ZSBhcmUgc29sdXRpb25zIG9mIHRoZXNlIHB1enpsZXMgaW4gdGhlIHRhYmxlIChpbmNsdWRp
bmcgc29tZSBvZiBteSBvd24mbmJzcDtvbmVzKS4uLiBMb29rcyBsaWtlIHdlIHNvbHZlZCBw
dXp6bGVzIHRoYXQgYXJlIG5vdCBhcyAmcXVvdDttYXRoZW1hdGljYWxseSBwdXJlJnF1b3Q7
IGFzIHRoZXkgc2hvdWxkIGJlLjwvcD4KPGRpdj48ZGl2IGNsYXNzPSJ5Z3Jwcy15aXYtMjA5
MDYyNzA5OWg1Ij48cD4mbmJzcDsgQW5kcmV5PC9wPiA8ZGl2Pjxicj48YnI+LS0tSW4gPGEg
cmVsPSJub2ZvbGxvdyIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9Im1haWx0bzo0ZF9jdWJpbmdA
eWFob29ncm91cHMuY29tIj40ZF9jdWJpbmdAeWFob29ncm91cHMuY29tPC9hPiwgJmx0O2Fu
ZHJleWFzdHJlbGluQC4uLiZndDsgd3JvdGU6PGJyPjxicj48ZGl2PjxwPns3LDN9IEYwLjQ6
MDoxIEYwLjg6MDoxJm5ic3A7cHV6emxlIHNvbHZlZCE8L3A+CjxwPkl0IGlzIGh5cGVyYm9s
aWMgZXF1aXZhbGVudCBvZiAmcXVvdDtnaWdhbWlueCZxdW90OyAtIHRoZXJlIGFyZSB0d28g
bGF5ZXJzIG9mIHJvdGF0aW9uIGF0IGVhY2ggZmFjZS4gTWV0aG9kIG9mIHNvbHZpbmcgaXMg
YWxtb3N0IHRoZSBzYW1lOiBJIHN0YXJ0IHdpdGggJnF1b3Q7c3ViZWRnZSZxdW90OyAxLWNv
bG9yIHBpZWNlcywgdGhlbiBjb21iaW5lIHBpZWNlcyBhdCBlYWNoIGVkZ2UsIHNvbHZlIHB1
enpsZSBsaWtlIGNsYXNzaWMgS2xlaW4gUXVhZHJpYyBhbmQmbmJzcDthdCBsYXN0Jm5ic3A7
cHV0ICZxdW90O3N1YmNvcm5lcnMmcXVvdDsgdG8mbmJzcDtjb3JyZWN0IHBsYWNlLiBNb3N0
IHByb2JsZW1zIGFyZSB3aXRoIHRoZSBzZWNvbmQgc3RhZ2UgLSB0aGVyZSBhcmUgODQgZWRn
ZXMsIGFuZCBpdCYjMzk7cyB2ZXJ5IGRpZmZpY3VsdCB0byBmaW5kIHBhcnRzIG9mIHRoZSBz
YW1lIGVkZ2UuIEkgZGlkIGl0IGJ5IGNvbGxlY3RpbmcgYWxsIGVkZ2UgcGFydHMgd2l0aCBz
b21lIGNvbG9yIGFyb3VuZCBvbmUgY2VudGVyIGFuZCB3b3JraW5nIHdpdGggdGhlbSAobmlj
ZSBmZWVsaW5nIC0gd2hlbiB5b3UgY2FuIGZyZWVseSByb3RhdGUgYWxtb3N0IGFsbCBmYWNl
cyZuYnNwO2FuZCBrbm93IHRoYXQgeW91IHdpbGwgbm90IHNwb2lsIGFueXRoaW5nIGJ5IHRo
YXQpLjwvcD4KPHA+Jm5ic3A7IFRvdGFsIHR3aXN0IGNvdW50IC0gNzU1OC4mbmJzcDtNYXhp
bWFsIG9wZXJhdGlvbiBsZW5ndGggLSAyNCAoZm9yIHJvdGF0aW5nIDMgY29ybmVycyBvbiB0
aGUgdGhpcmQgc3RhZ2UpLCBvdGhlciBvcGVyYXRpb25zIGFyZSBub3QgbG9uZ2VyIHRoYW4g
OCB0d2lzdHMuPC9wPjxwPjxicj48L3A+PHA+QW5kcmV5Jm5ic3A7Jm5ic3A7PC9wPiA8ZGl2
Pjxicj48YnI+PGJsb2NrcXVvdGU+PHNwYW4+IC0tLUluIDxhIHJlbD0ibm9mb2xsb3ciIHRh
cmdldD0iX2JsYW5rIiBocmVmPSJtYWlsdG86NGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSI+
NGRfY3ViaW5nQHlhaG9vZ3JvdXBzLmNvbTwvYT4sICZsdDtyb2ljZTNALi4uJmd0OyB3cm90
ZTo8YnI+Cjxicj48ZGl2PjxkaXY+WWVhaCwgYXdlc29tZSE8L2Rpdj48ZGl2Pjxicj48L2Rp
dj48ZGl2Pkxvb2tzIGxpa2UgYW5vdGhlciBjcnlzdGFsIGN1YmUgb3JkZXIgbWF5IGJlIGhh
cHBlbmluZyA6RDxicj48YnI+PGRpdj4oc2VudCBmcm9tIG15IHBob25lKTxicj48L2Rpdj48
L2Rpdj48ZGl2Pjxicj48YmxvY2txdW90ZT48c3Bhbj4gT24gTm92IDE3LCAyMDEzLCBhdCAx
OjU3IEFNLCBNZWxpbmRhIEdyZWVuICZsdDs8YSByZWw9Im5vZm9sbG93IiB0YXJnZXQ9Il9i
bGFuayIgaHJlZj0ibWFpbHRvOm1lbGluZGFALi4uIj5tZWxpbmRhQC4uLjwvYT4mZ3Q7IHdy
b3RlOjxicj4KPGJyPjwvc3Bhbj48L2Jsb2NrcXVvdGU+PC9kaXY+PGJsb2NrcXVvdGUgdHlw
ZT0iY2l0ZSI+PGRpdj4KCgoKCgoKICAgICAgICAKCiAgCiAgICAKICAKICAKCgoKCgoKICAg
IE5pY2UuPGJyPgogICAgPGJyPgogICAgPGRpdj5PbiAxMS8xNi8yMDEzIDc6MDIgUE0sCiAg
ICAgIDxhIHJlbD0ibm9mb2xsb3ciIHRhcmdldD0iX2JsYW5rIiBocmVmPSJtYWlsdG86YW5k
cmV5YXN0cmVsaW5ALi4uIj5hbmRyZXlhc3RyZWxpbkAuLi48L2E+IHdyb3RlOjxicj4KICAg
IDwvZGl2PgogICAgPGJsb2NrcXVvdGUgdHlwZT0iY2l0ZSI+CiAgICAgIAogICAgICAKICAg
ICAgPHA+MTAwIHB1enpsZXMgc29sdmVkIDopJm5ic3A7PC9wPgogICAgICA8cD48YnI+CiAg
ICAgIDwvcD4KICAgICAgPHA+QW5kcmV5PC9wPgogICAgICA8ZGl2Pjxicj4KICAgICAgICA8
YnI+CiAgICAgICAgLS0tSW4gPGEgcmVsPSJub2ZvbGxvdyIgdGFyZ2V0PSJfYmxhbmsiIGhy
ZWY9Im1haWx0bzo0ZF9jdWJpbmdAeWFob29ncm91cHMuY29tIj40ZF9jdWJpbmdAeWFob29n
cm91cHMuY29tPC9hPiwgPGEgcmVsPSJub2ZvbGxvdyIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9
Im1haWx0bzphbmRyZXlhc3RyZWxpbkAuLi4iPiZsdDthbmRyZXlhc3RyZWxpbkAuLi4mZ3Q7
PC9hPgogICAgICAgIHdyb3RlOjxicj4KICAgICAgICA8YnI+CiAgICAgICAgPGRpdj4KICAg
ICAgICAgIDxwPnsxMCwzfSAxOEMgRjAuNjc6MDoxIHNvbHZlZC4mbmJzcDsyNjgwIHR3aXN0
cy48L3A+CiAgICAgICAgICA8cD5JdCB3YXMgZWFzeSBlbm91Z2ggKGlmIHlvdSBrbm93IGhv
dyB0byBoYW5kbGUgcGllY2VzIHdpdGgKICAgICAgICAgICAgd3Jvbmcgb3JpZW50YXRpb24p
LjwvcD4KICAgICAgICAgIDxwPjxicj4KICAgICAgICAgIDwvcD4KICAgICAgICAgIDxwPkFu
ZHJleTwvcD4KICAgICAgICAgIDxkaXY+PGJyPgogICAgICAgICAgICA8YnI+CiAgICAgICAg
ICAgIDxibG9ja3F1b3RlPjxzcGFuPiAtLS1JbiA8YSByZWw9Im5vZm9sbG93IiB0YXJnZXQ9
Il9ibGFuayIgaHJlZj0ibWFpbHRvOjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20iPjREX0N1
YmluZ0B5YWhvb2dyb3Vwcy5jb208L2E+LAogICAgICAgICAgICAgICAgPGEgcmVsPSJub2Zv
bGxvdyIgdGFyZ2V0PSJfYmxhbmsiIGhyZWY9Im1haWx0bzplZC5iYXVtYW5uQC4uLiI+Jmx0
O2VkLmJhdW1hbm5ALi4uJmd0OzwvYT4gd3JvdGU6PGJyPgogICAgICAgICAgICAgICAgPGJy
PgogICAgICAgICAgICAgICAgPGRpdj4KICAgICAgICAgICAgICAgICAgPGRpdj48Zm9udCBm
YWNlPSJBcmlhbCI+SSYjMzk7YW0gcGxheWluZyB3aXRoIE1UCiAgICAgICAgICAgICAgICAg
ICAgICBoeXAgezEwLDNdLDE4QyBGMDowOjEobm90IEYxOjA6MCkuIDMwMCB0d2lzdHMgZm9y
CiAgICAgICAgICAgICAgICAgICAgICA0IG9mIHRoZSAxOCBjb2xvcnMgc28gZmFyLiBJIGRv
biYjMzk7dCBjYXJlIGZvciB0aGUKICAgICAgICAgICAgICAgICAgICAgIG51bWJlciBvZiB0
d2lzdHMgYW5kIHVzZSAzIGN5Y2xlcyBhbGwgdGhlIHdheSBldmVuCiAgICAgICAgICAgICAg
ICAgICAgICBlYXJseSBpbiBvcmRlciB0byBub3QgZGlzdHVyYiBhbnl0aGluZy4gSSBhbHNv
CiAgICAgICAgICAgICAgICAgICAgICBjb21wbGV0ZSBjb2xvcnMgYmVmb3JlIHN0YXJ0aW5n
IGEgbmV3IG9uZS4gU28gdGhpcwogICAgICAgICAgICAgICAgICAgICAgcHV6emxlIGlzIG5v
dCBzbyBoYXJkIHRvIHNvbHZlIGJ1dCBmdW5ueS48L2ZvbnQ+PC9kaXY+CiAgICAgICAgICAg
ICAgICAgIDxkaXY+Jm5ic3A7PC9kaXY+CiAgICAgICAgICAgICAgICAgIDxkaXY+PGZvbnQg
ZmFjZT0iQXJpYWwiPkkgd2lsbCBjb21wbGV0ZSB3aWtpCiAgICAgICAgICAgICAgICAgICAg
ICBmb3IgdGhlIDYwIG5ldyBwdXp6bGVzIGFuZCBlZmZlY3RpdmVseSBhaW0gZm9yIHRoZQog
ICAgICAgICAgICAgICAgICAgICAgbmV3IDUwJS48L2ZvbnQ+PC9kaXY+CiAgICAgICAgICAg
ICAgICAgIDxkaXY+Jm5ic3A7PC9kaXY+CiAgICAgICAgICAgICAgICAgIDxkaXY+PGZvbnQg
ZmFjZT0iQXJpYWwiPkVkPC9mb250PjwvZGl2PgogICAgICAgICAgICAgICAgICA8ZGl2PiZu
YnNwOzwvZGl2PgogICAgICAgICAgICAgICAgICA8YmxvY2txdW90ZT48c3Bhbj4KICAgICAg
ICAgICAgICAgICAgICAgIDxibG9ja3F1b3RlIHN0eWxlPSJwYWRkaW5nLXJpZ2h0OjBweDtw
YWRkaW5nLWxlZnQ6NXB4O21hcmdpbi1yaWdodDowcHg7bWFyZ2luLWxlZnQ6NXB4O2JvcmRl
ci1sZWZ0LWNvbG9yOnJnYigwLCAwLCAwKTtib3JkZXItbGVmdC13aWR0aDoycHg7Ym9yZGVy
LWxlZnQtc3R5bGU6c29saWQ7Ij4KICAgICAgICAgICAgICAgICAgICAgICAgPGRpdiBzdHls
ZT0iZm9udDoxMHB0L25vcm1hbCBhcmlhbDtmb250LXNpemUtYWRqdXN0Om5vbmU7Zm9udC1z
dHJldGNoOm5vcm1hbDsiPi0tLS0tCiAgICAgICAgICAgICAgICAgICAgICAgICAgT3JpZ2lu
YWwgTWVzc2FnZSAtLS0tLSA8L2Rpdj4KICAgICAgICAgICAgICAgICAgICAgICAgPGRpdiBz
dHlsZT0iYmFja2dyb3VuZDpyZ2IoMjI4LCAyMjgsIDIyOCk7Zm9udDoxMHB0L25vcm1hbCBh
cmlhbDtmb250LXNpemUtYWRqdXN0Om5vbmU7Zm9udC1zdHJldGNoOm5vcm1hbDsiPjxiPkZy
b206PC9iPgogICAgICAgICAgICAgICAgICAgICAgICAgIDxhIHJlbD0ibm9mb2xsb3ciIHRp
dGxlPSJhbmRyZXlhc3RyZWxpbkAuLi4iIHRhcmdldD0iX2JsYW5rIiBocmVmPSJtYWlsdG86
YW5kcmV5YXN0cmVsaW5ALi4uIj5hbmRyZXlhc3RyZWxpbkAuLi48L2E+CiAgICAgICAgICAg
ICAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAgICAgICAgICA8ZGl2IHN0eWxl
PSJmb250OjEwcHQvbm9ybWFsIGFyaWFsO2ZvbnQtc2l6ZS1hZGp1c3Q6bm9uZTtmb250LXN0
cmV0Y2g6bm9ybWFsOyI+PGI+VG86PC9iPgogICAgICAgICAgICAgICAgICAgICAgICAgIDxh
IHJlbD0ibm9mb2xsb3ciIHRpdGxlPSI0RF9DdWJpbmdAeWFob29ncm91cHMuY29tIiB0YXJn
ZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOjREX0N1YmluZ0B5YWhvb2dyb3Vwcy5jb20iPjRE
X0N1YmluZ0B5YWhvb2dyb3Vwcy5jb208L2E+CiAgICAgICAgICAgICAgICAgICAgICAgIDwv
ZGl2PgogICAgICAgICAgICAgICAgICAgICAgICA8ZGl2IHN0eWxlPSJmb250OjEwcHQvbm9y
bWFsIGFyaWFsO2ZvbnQtc2l6ZS1hZGp1c3Q6bm9uZTtmb250LXN0cmV0Y2g6bm9ybWFsOyI+
PGI+U2VudDo8L2I+CiAgICAgICAgICAgICAgICAgICAgICAgICAgU2F0dXJkYXksIE5vdmVt
YmVyIDE2LCAyMDEzIDQ6MDIgQU08L2Rpdj4KICAgICAgICAgICAgICAgICAgICAgICAgPGRp
diBzdHlsZT0iZm9udDoxMHB0L25vcm1hbCBhcmlhbDtmb250LXNpemUtYWRqdXN0Om5vbmU7
Zm9udC1zdHJldGNoOm5vcm1hbDsiPjxiPlN1YmplY3Q6PC9iPgogICAgICAgICAgICAgICAg
ICAgICAgICAgIFJFOiBSZTogW01DNERdIE5ldyBwdXp6bGVzPC9kaXY+CiAgICAgICAgICAg
ICAgICAgICAgICAgIDxkaXY+PGJyPgogICAgICAgICAgICAgICAgICAgICAgICA8L2Rpdj4K
ICAgICAgICAgICAgICAgICAgICAgICAgPHNwYW4+Jm5ic3A7PC9zcGFuPgogICAgICAgICAg
ICAgICAgICAgICAgICA8ZGl2PgogICAgICAgICAgICAgICAgICAgICAgICAgIDxwPiA8L3A+
CiAgICAgICAgICAgICAgICAgICAgICAgICAgPHA+Jm5ic3A7TWF5IGJlLCBidXQgaW4gMTIw
LUNlbGwgeW91IGhhdmUgc29tZQogICAgICAgICAgICAgICAgICAgICAgICAgICAgc2VhcmNo
IHRvb2xzLiBJbiAzNi1jb2xvciB0aWxlcyB0aGVyZSBpcwogICAgICAgICAgICAgICAgICAg
ICAgICAgICAgbWFueSBzaW1pbGFyIGNvbG9ycyB0aGF0IG1ha2VzIGRpZmZpY3VsdAogICAg
ICAgICAgICAgICAgICAgICAgICAgICAgc2VhcmNoaW5nIG9mIHRoZSBjb3JyZWN0IHRpbGUg
KGV2ZW4gd2hlbiB5b3UKICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ha2Ugb25lIGZh
Y2Ugd2hpdGUgYW5kIGFsbCBvdGhlcnMgZGFyaykuCiAgICAgICAgICAgICAgICAgICAgICAg
ICAgICBQaWVjZXMgb2YgRjE6MDowIGFyZSB2ZXJ5IHRoaW4sJm5ic3A7bW9zdCBvZiB0aGVt
CiAgICAgICAgICAgICAgICAgICAgICAgICAgICBhcmUgY2xvc2UgdG8gYm91bmRhcnksJm5i
c3A7c28geW91IGRvbiYjMzk7dCBldmVuIHNlZQogICAgICAgICAgICAgICAgICAgICAgICAg
ICAgdGhlbSBhbGwuJm5ic3A7PC9wPgogICAgICAgICAgICAgICAgICAgICAgICAgIDxwPlRv
cG9sb2d5IG9mIHsxMCwzfSwgMzZDIGlzIG5vdCB2ZXJ5IGVhc3kKICAgICAgICAgICAgICAg
ICAgICAgICAgICAgIChhY3R1YWxseSwgSSBkb24mIzM5O3QgdW5kZXJzdGFuZCBpdCBhdCBh
bGwpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgV2hlbiBJIGxvb2sgZm9yIHRoZSB0
aWxlLCBJJiMzOTttIG5vdCBhbHdheXMKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN1
cmUgdGhhdCBteSBzZWFyY2ggY292ZXJzIHdob2xlIGZ1bmRhbWVudGFsCiAgICAgICAgICAg
ICAgICAgICAgICAgICAgICBhcmVhLCBzbyBJIGNhbiBnbyBvdmVyIHRoZSBzYW1lIHBhcnQg
YWdhaW4KICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFuZCBhZ2Fpbi4mbmJzcDtBbmQm
bmJzcDt0aGVyZSZuYnNwO2FyZSZuYnNwO3Byb2JsZW1zIHdpdGgKICAgICAgICAgICAgICAg
ICAgICAgICAgICAgIGZpbmRpbmcgYSB3YXkgZm9yJm5ic3A7dGlsZXMmbmJzcDt0aGF0IGRv
ZXNuJiMzOTt0IGRpc3R1cmIKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFscmVhZHkg
c29sdmVkIHBhcnRzLjwvcD4KICAgICAgICAgICAgICAgICAgICAgICAgICA8cD48YnI+CiAg
ICAgICAgICAgICAgICAgICAgICAgICAgPC9wPgogICAgICAgICAgICAgICAgICAgICAgICAg
IDxwPkFuZHJleTwvcD4KICAgICAgICAgICAgICAgICAgICAgICAgICA8ZGl2Pjxicj4KICAg
ICAgICAgICAgICAgICAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgICAgICAgICAgICAg
ICAgIC0tLUluIDxhIHJlbD0ibm9mb2xsb3ciIHRhcmdldD0iX2JsYW5rIiBocmVmPSJtYWls
dG86NERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNvbSI+NERfQ3ViaW5nQHlhaG9vZ3JvdXBzLmNv
bTwvYT4sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICA8YSByZWw9Im5vZm9sbG93IiB0
YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOm1lbGluZGFALi4uIj4mbHQ7bWVsaW5kYUAu
Li4mZ3Q7PC9hPiB3cm90ZTo8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICA8YnI+
CiAgICAgICAgICAgICAgICAgICAgICAgICAgICA8ZGl2PldoYXQKICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgYWJvdXQgaXQgaXMgZGlmZmljdWx0PyBJIHdvdWxkIGd1ZXNzIHRo
YXQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9yZSBjb2xvcnMgbWFrZXMgaXQg
bW9yZSB0ZWRpb3VzIGJ1dCBub3QKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaGFy
ZGVyLCBzaW1pbGFyIHRvIDNeNCB2ZXJzdXMgMTIwLUNlbGwuPGJyPgogICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAtTWVsaW5kYTxicj4KICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8ZGl2Pk9uCiAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgMTEvMTUvMjAxMyAxOjQ0IFBNLCA8YSByZWw9
Im5vZm9sbG93IiB0YXJnZXQ9Il9ibGFuayIgaHJlZj0ibWFpbHRvOmFuZHJleWFzdHJlbGlu
QC4uLiI+YW5kcmV5YXN0cmVsaW5ALi4uPC9hPgogICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgIHdyb3RlOjxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPC9kaXY+
CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxibG9ja3F1b3RlPjxzcGFuPgogICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGJsb2NrcXVvdGUgdHlwZT0iY2l0ZSI+
CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxwPkkmIzM5O3ZlIHNvbHZl
ZCB7MTAsM30sIDM2QywgRjowOjA6MS4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICBJdCB3YXMgZGlmZmljdWx0IC0gaXQgaGFzIHRvbyBtYW55CiAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sb3JzLiBUb3RhbCBjb3VudCBpcyAyNTE4
CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHdpc3RzLjwvcD4KICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPHA+PGJyPgogICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICA8L3A+CiAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgIDxwPkFuZHJleTwvcD4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgIDwvYmxvY2txdW90ZT4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxi
cj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8L3NwYW4+PC9ibG9ja3F1b3Rl
PgogICAgICAgICAgICAgICAgICAgICAgICAgICAgPC9kaXY+CiAgICAgICAgICAgICAgICAg
ICAgICAgICAgPC9kaXY+CiAgICAgICAgICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAg
ICAgICAgICAgICAgICAgPC9ibG9ja3F1b3RlPgogICAgICAgICAgICAgICAgICAgIDwvc3Bh
bj48L2Jsb2NrcXVvdGU+CiAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICA8
L3NwYW4+PC9ibG9ja3F1b3RlPgogICAgICAgICAgPC9kaXY+CiAgICAgICAgPC9kaXY+CiAg
ICAgIDwvZGl2PgogICAgICAKICAgICAgPGRpdiBzdHlsZT0iY29sb3I6d2hpdGU7Y2xlYXI6
Ym90aDsiPjwvZGl2PgogICAgPC9ibG9ja3F1b3RlPgogICAgPGJyPgogIAoKCgoKCgo8ZGl2
IHN0eWxlPSJjb2xvcjp3aGl0ZTtjbGVhcjpib3RoOyI+PC9kaXY+CgoKPC9kaXY+PC9ibG9j
a3F1b3RlPjwvZGl2PiAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg
ICAgICAgICAgPC9zcGFuPjwvYmxvY2txdW90ZT48L2Rpdj48L2Rpdj4gICAgICAgICAgICAg
ICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIDwvZGl2PgoKCgoKCjxicj4K
Cgo8YnI+CgoKCgo8ZGl2IHN0eWxlPSJjb2xvcjp3aGl0ZTtjbGVhcjpib3RoOyI+PC9kaXY+
CjwvZGl2PjwvZGl2PjwvZGl2PgoKCjwvYmxvY2txdW90ZT48L2Rpdj48YnI+PC9zcGFuPjwv
YmxvY2txdW90ZT48L2Rpdj4KPC9kaXY+PC9kaXY+

--9nlWnTS9ocNmxdhsK3FKVLWiM6a5jwOaA8HvrLV--




From: Roice Nelson <roice3@gmail.com>
Date: Tue, 19 Nov 2013 01:12:18 -0600
Subject: Re: Re: [MC4D] RE: New puzzles



--089e0122aefe8eb9ce04eb8262da
Content-Type: text/plain; charset=ISO-8859-1

ok, we'll do them as separate puzzles then. I won't repeat the
face-turning slicing in both places though, since the face-turning versions
will behave identically. Would be nice if we can come up with some
distinguishing naming too.

I'm not sure I followed your last question. Did you mean to ask if you can
do an identification with an "in place reflection" and "end rotation", but
without extra *reflections*? If that is what you meant, this is possible
to configure, though I'm not sure it can lead to sensical topologies. I
just tried it on a couple puzzles including the {8,4} 9C and only achieved
strange results, but maybe there is some case where it would work. To have
no reflections, use the same trick I suggested above and make the EdgeSet
0. Internally, this reflects the tile twice, but the second reflection
just undoes the first one. You can do this and set the other properties
however you want.

{8,4} 9C has 9 faces, 16 edges, and 8 vertices, so the Euler Characteristic
is 1 and the topology is the projective plane. As configured, there are
some vertices and edges that look identical (same colors) but are
physically different. Not all the faces are octagons. Looks like 4 are
squares and 4 are digons. It is a strange puzzle for sure.

Roice


On Mon, Nov 18, 2013 at 1:48 PM, wrote:

>
>
> Roice,
>
> I think, it's better to add new puzzles with additional identifications
> on vertex- and edge-centered twists. Because they are really different
> puzzles, and some of them may be much more difficult than old ones.
>
> I'm looking at {8,4} 9 colors, and can't understand it. In
> face-centered puzzle it works like non-oriented non-uniform puzzle with
> some two-side edges. In vertex-centered variant some vertices of the same
> structure are identified, but sometimes there is only half of them... and
> the identified ones don't all have the same orientation.
>
> Is it possible to add identification with "in place reflection" and "end
> rotation", but without extra rotations?
>
>
> Andrey
>
>
> ---In 4D_Cubing@yahoogroups.com, wrote:
>
> Hi Andrey,
>
> Thanks for your observation about this. To get the "mathematically pure"
> behavior you are wanting, we can add an additional identification to each
> of these puzzles, one that is a rotation only (no reflections). We can
> effectively get that by marking EdgeSet 0, and using the appropriate
> EndRotation... 4 for {8,3} and 5 for {10,3}.
>
> Because of the solutions listed in the table, there is the question of
> whether to edit the existing puzzles or add new ones. The existing
> definitions are valid configurations too, just with a different topology.
> But they are similar enough that I'm thinking we wouldn't want separate
> definitions with only this difference.
>
> If it is ok with you and others, I will just change the behavior of the
> existing puzzles and not worry about the table, but if anyone disagrees
> please let me know. I'll push the change out at the same time as the
> addition of all the new colorings you've been making.
>
> Thanks again,
> Roice
>
>
>
> On Sun, Nov 17, 2013 at 3:22 PM, wrote:
>
>
>
> Roice,
>
> something is wrong with {10,3} 6C edge-rotated puzzles. When I select
> some edge, I expect that edges on opposite sides of its decagons will be
> selected too (because mathematically they are the same). But that edges
> remain non-selected. Same is true for vertex-rotated 6C, and also for
> {10,3} 12color.
>
> Is there something missing in puzzle description?
>
>
> I see the same in {8,3} 6C... and I don't like it because there are
> solutions of these puzzles in the table (including some of my own ones)...
> Looks like we solved puzzles that are not as "mathematically pure" as they
> should be.
>
> Andrey
>
>

--089e0122aefe8eb9ce04eb8262da
Content-Type: text/html; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable

ok, we'll do them as separate puzzles then. =A0I won&#=
39;t repeat the face-turning slicing in both places though, since the face-=
turning versions will behave identically. =A0Would be nice if we can come u=
p with some distinguishing naming too.



I'm not sure I followed your last =
question. =A0Did you mean to ask if you can do an identification with an &q=
uot;in place reflection"=A0and "end rotation", but without e=
xtra reflections?=A0=A0 If that is what you meant, this is possible =
to configure, though I'm not sure it can lead to sensical topologies. =
=A0I just tried it on a couple puzzles including the {8,4} 9C and only achi=
eved strange results, but maybe there is some case where it would work. =A0=
To have no reflections, use the same trick I suggested above and make the E=
dgeSet 0. =A0Internally, this reflects the tile twice, but the second refle=
ction just undoes the first one. =A0You can do this and set the other prope=
rties however you want.



{8,4} 9C ha=
s 9 faces, 16 edges, and 8 vertices, so the Euler Characteristic is 1 and t=
he topology is the projective plane. =A0As configured, there are some verti=
ces and edges that look identical (same colors) but are physically differen=
t. =A0Not all the faces are octagons. =A0Looks like 4 are squares and 4 are=
digons. =A0It is a strange puzzle for sure.



Roice
=


ass=3D"gmail_quote">On Mon, Nov 18, 2013 at 1:48 PM, <=
;andreyastrel=
in@yahoo.com
>
wrote:



left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;p=
adding-left:1ex">






=20=20=20=20=20=20=20=20

















Roice,

=A0 I think, it's better to add new puzzles with=A0addi=
tional=A0identifications on vertex- and edge-centered twists. Because they =
are really different puzzles, and some of them may be much more difficult t=
han old ones.




=A0 I'm looking at {8,4} 9 colors, and can't understand it. In f=
ace-centered=A0puzzle it works like non-oriented non-uniform=A0puzzle=A0wit=
h some two-side edges. In vertex-centered variant some vertices of the same=
structure are identified, but sometimes there is only half of them... and =
the identified ones don't all have the same orientation.




=A0 Is it possible to add identification with "in place reflection&=
quot;=A0and "end rotation", but without extra rotations?=A0

>

Andrey



---In groups.com" target=3D"_blank">4D_Cubing@yahoogroups.com, <roice3@...=
> wrote:




Hi Andrey,

Thanks for you=
r observation about this. =A0To get the "mathematically pure" beh=
avior you are wanting, we can add an additional identification to each of t=
hese puzzles, one that is a rotation only (no reflections). =A0We can effec=
tively get that by marking EdgeSet 0, and using the appropriate EndRotation=
... 4 for {8,3} and 5 for {10,3}.





Because of the solutions listed in the table, there is the q=
uestion of whether to edit the existing puzzles or add new ones. =A0The exi=
sting definitions are valid configurations too, just with a different topol=
ogy. =A0But they are similar enough that I'm thinking we wouldn't w=
ant separate definitions with only this difference.





If it is ok with you and others, I will just change the=
behavior of the existing puzzles and not worry about the table, but if any=
one disagrees please let me know. =A0I'll push the change out at the sa=
me time as the addition of all the new colorings you've been making.iv>




Thanks again,
Roice

>


On Sun, Nov 17,=
2013 at 3:22 PM, <:andreyastrelin@..." target=3D"_blank">andreyastrelin@...> wr=
ote:




color:rgb(204,204,204);border-left-width:1px;border-left-style:solid">






=20=20=20=20=20=20=20=20

















Roice,

=A0 something is wrong with {10,3} 6C edge-rotated puzzles.=
When I select some edge, I expect that edges on opposite sides=A0of its de=
cagons=A0will be selected too (because mathematically they are the same). B=
ut that edges remain non-selected. Same is true for vertex-rotated 6C, and =
also for {10,3} 12color.





=A0 Is there=A0something missing=A0in puzzle description?


=

=A0 I see the same in {8,3} 6C... and I don't like it because there =
are solutions of these puzzles in the table (including some of my own=A0one=
s)... Looks like we solved puzzles that are not as "mathematically pur=
e" as they should be.





=A0 Andrey


<=
/div>
<=
/div>


--089e0122aefe8eb9ce04eb8262da--




From: Roice Nelson <roice3@gmail.com>
Date: Tue, 26 Nov 2013 19:02:19 -0600
Subject: Re: Re: [MC4D] RE: New puzzles



--001a11c3c87e223d3504ec1e26d5
Content-Type: text/plain; charset=ISO-8859-1

Hi Andrey,

Sorry I haven't finished merging the puzzles into the distribution yet (I
have started at least). I'm writing now because I did notice a few of the
puzzles could use a bit more fill-in by adding more identifications.
Upping the tile count also helps, but that has the disadvantage that build
times scale with the tile count (would be so nice to have build caching, as
suggested by Melinda). Probably doing a little of both can give the best
results.

In the worst case for puzzles with poor fill-in, you can pan them off to
the boundary (MT will fail to keep the puzzle centered). Good coverage is
visually better anyway, and for these reasons, I'd like to get the puzzles
included with main program setup as well possible.

I noticed the following could use some improvement:
{12,3} 24C, 6C
{12,4} 8C

For example, here's a screenshot of what the 6C can look like when you pan
near the orange tile right now:
http://groups.yahoo.com/neo/groups/4D_Cubing/photos/albums/622194858/lightbox/973196532

The {5,5} 12C is pretty good, but could maybe use just a tad extra love
too. I'll work on these, but I thought I'd mention in case you wanted to
as well. Good to keep in mind for future puzzles in any case.

Best,
Roice

P.S. Had a long plane ride today and made a change to display the topology
information, which I'll push out with your new puzzles :)



On Tue, Nov 19, 2013 at 1:12 AM, Roice Nelson wrote:

> ok, we'll do them as separate puzzles then. I won't repeat the
> face-turning slicing in both places though, since the face-turning versions
> will behave identically. Would be nice if we can come up with some
> distinguishing naming too.
>
> I'm not sure I followed your last question. Did you mean to ask if you
> can do an identification with an "in place reflection" and "end rotation",
> but without extra *reflections*? If that is what you meant, this is
> possible to configure, though I'm not sure it can lead to sensical
> topologies. I just tried it on a couple puzzles including the {8,4} 9C and
> only achieved strange results, but maybe there is some case where it would
> work. To have no reflections, use the same trick I suggested above and
> make the EdgeSet 0. Internally, this reflects the tile twice, but the
> second reflection just undoes the first one. You can do this and set the
> other properties however you want.
>
> {8,4} 9C has 9 faces, 16 edges, and 8 vertices, so the Euler
> Characteristic is 1 and the topology is the projective plane. As
> configured, there are some vertices and edges that look identical (same
> colors) but are physically different. Not all the faces are octagons.
> Looks like 4 are squares and 4 are digons. It is a strange puzzle for
> sure.
>
> Roice
>
>
> On Mon, Nov 18, 2013 at 1:48 PM, wrote:
>
>>
>>
>> Roice,
>>
>> I think, it's better to add new puzzles with additional identifications
>> on vertex- and edge-centered twists. Because they are really different
>> puzzles, and some of them may be much more difficult than old ones.
>>
>> I'm looking at {8,4} 9 colors, and can't understand it. In
>> face-centered puzzle it works like non-oriented non-uniform puzzle with
>> some two-side edges. In vertex-centered variant some vertices of the same
>> structure are identified, but sometimes there is only half of them... and
>> the identified ones don't all have the same orientation.
>>
>> Is it possible to add identification with "in place reflection" and
>> "end rotation", but without extra rotations?
>>
>>
>> Andrey
>>
>>
>> ---In 4D_Cubing@yahoogroups.com, wrote:
>>
>> Hi Andrey,
>>
>> Thanks for your observation about this. To get the "mathematically pure"
>> behavior you are wanting, we can add an additional identification to each
>> of these puzzles, one that is a rotation only (no reflections). We can
>> effectively get that by marking EdgeSet 0, and using the appropriate
>> EndRotation... 4 for {8,3} and 5 for {10,3}.
>>
>> Because of the solutions listed in the table, there is the question of
>> whether to edit the existing puzzles or add new ones. The existing
>> definitions are valid configurations too, just with a different topology.
>> But they are similar enough that I'm thinking we wouldn't want separate
>> definitions with only this difference.
>>
>> If it is ok with you and others, I will just change the behavior of the
>> existing puzzles and not worry about the table, but if anyone disagrees
>> please let me know. I'll push the change out at the same time as the
>> addition of all the new colorings you've been making.
>>
>> Thanks again,
>> Roice
>>
>>
>>
>> On Sun, Nov 17, 2013 at 3:22 PM, wrote:
>>
>>
>>
>> Roice,
>>
>> something is wrong with {10,3} 6C edge-rotated puzzles. When I select
>> some edge, I expect that edges on opposite sides of its decagons will be
>> selected too (because mathematically they are the same). But that edges
>> remain non-selected. Same is true for vertex-rotated 6C, and also for
>> {10,3} 12color.
>>
>> Is there something missing in puzzle description?
>>
>>
>> I see the same in {8,3} 6C... and I don't like it because there are
>> solutions of these puzzles in the table (including some of my own ones)...
>> Looks like we solved puzzles that are not as "mathematically pure" as they
>> should be.
>>
>> Andrey
>>
>>

--001a11c3c87e223d3504ec1e26d5
Content-Type: text/html; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable

Hi Andrey,

Sorry I haven'=
;t finished merging the puzzles into the distribution yet (I have started a=
t least). =A0I'm writing now because I did notice a few of the puzzles =
could use a bit more fill-in by adding more identifications. =A0Upping the =
tile count also helps, but that has the disadvantage that build times scale=
with the tile count (would be so nice to have build caching, as suggested =
by Melinda). =A0Probably doing a little of both can give the best results.<=
/div>

In the worst case for puzzles with poor fill-in, you ca=
n pan them off to the boundary (MT will fail to keep the puzzle centered). =
=A0Good coverage is visually better anyway, and for these reasons, I'd =
like to get the puzzles included with main program setup as well possible.<=
/div>

I noticed the following could use some improvement:
=
{12,3} 24C, 6C
{12,4} 8C

For =
example, here's a screenshot of what the 6C can look like when you pan =
near the orange tile right now:


>
The {5,5} 12C is pretty good, but could maybe use just a tad extra love too=
. =A0I'll work on these, but I thought I'd mention in case you want=
ed to as well. =A0Good to keep in mind for future puzzles in any case.
>

Best,
Roice

P.S. Had=
a long plane ride today and made a change to display the topology informat=
ion, which I'll push out with your new puzzles :)




On Tue,=
Nov 19, 2013 at 1:12 AM, Roice Nelson <lto:roice3@gmail.com" target=3D"_blank">roice3@gmail.com> wro=
te:

x #ccc solid;padding-left:1ex">
ok, we'll do them as se=
parate puzzles then. =A0I won't repeat the face-turning slicing in both=
places though, since the face-turning versions will behave identically. =
=A0Would be nice if we can come up with some distinguishing naming too. class=3D"gmail_extra">



I'm not sure I followed your last =
question. =A0Did you mean to ask if you can do an identification with an &q=
uot;in place reflection"=A0and "end rotation", but without e=
xtra reflections?=A0=A0 If that is what you meant, this is possible =
to configure, though I'm not sure it can lead to sensical topologies. =
=A0I just tried it on a couple puzzles including the {8,4} 9C and only achi=
eved strange results, but maybe there is some case where it would work. =A0=
To have no reflections, use the same trick I suggested above and make the E=
dgeSet 0. =A0Internally, this reflects the tile twice, but the second refle=
ction just undoes the first one. =A0You can do this and set the other prope=
rties however you want.




{8,4} 9C ha=
s 9 faces, 16 edges, and 8 vertices, so the Euler Characteristic is 1 and t=
he topology is the projective plane. =A0As configured, there are some verti=
ces and edges that look identical (same colors) but are physically differen=
t. =A0Not all the faces are octagons. =A0Looks like 4 are squares and 4 are=
digons. =A0It is a strange puzzle for sure.




Roice
=

lass=3D"gmail_extra">
On Mon, Nov 18, 2013 at=
1:48 PM, <" target=3D"_blank">andreyastrelin@yahoo.com> wrote:




left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;p=
adding-left:1ex">






=20=20=20=20=20=20=20=20

















Roice,

=A0 I think, it's better to add new puzzles with=A0addi=
tional=A0identifications on vertex- and edge-centered twists. Because they =
are really different puzzles, and some of them may be much more difficult t=
han old ones.





=A0 I'm looking at {8,4} 9 colors, and can't understand it. In f=
ace-centered=A0puzzle it works like non-oriented non-uniform=A0puzzle=A0wit=
h some two-side edges. In vertex-centered variant some vertices of the same=
structure are identified, but sometimes there is only half of them... and =
the identified ones don't all have the same orientation.





=A0 Is it possible to add identification with "in place reflection&=
quot;=A0and "end rotation", but without extra rotations?=A0

>

Andrey



---In groups.com" target=3D"_blank">4D_Cubing@yahoogroups.com, <roice3@...=
> wrote:





Hi Andrey,

Thanks for you=
r observation about this. =A0To get the "mathematically pure" beh=
avior you are wanting, we can add an additional identification to each of t=
hese puzzles, one that is a rotation only (no reflections). =A0We can effec=
tively get that by marking EdgeSet 0, and using the appropriate EndRotation=
... 4 for {8,3} and 5 for {10,3}.






Because of the solutions listed in the table, there is the q=
uestion of whether to edit the existing puzzles or add new ones. =A0The exi=
sting definitions are valid configurations too, just with a different topol=
ogy. =A0But they are similar enough that I'm thinking we wouldn't w=
ant separate definitions with only this difference.






If it is ok with you and others, I will just change the=
behavior of the existing puzzles and not worry about the table, but if any=
one disagrees please let me know. =A0I'll push the change out at the sa=
me time as the addition of all the new colorings you've been making.iv>





Thanks again,
Roice

>


On Sun, Nov 17,=
2013 at 3:22 PM, <:andreyastrelin@..." target=3D"_blank">andreyastrelin@...> wr=
ote:





color:rgb(204,204,204);border-left-width:1px;border-left-style:solid">






=20=20=20=20=20=20=20=20

















Roice,

=A0 something is wrong with {10,3} 6C edge-rotated puzzles.=
When I select some edge, I expect that edges on opposite sides=A0of its de=
cagons=A0will be selected too (because mathematically they are the same). B=
ut that edges remain non-selected. Same is true for vertex-rotated 6C, and =
also for {10,3} 12color.






=A0 Is there=A0something missing=A0in puzzle description?


=

=A0 I see the same in {8,3} 6C... and I don't like it because there =
are solutions of these puzzles in the table (including some of my own=A0one=
s)... Looks like we solved puzzles that are not as "mathematically pur=
e" as they should be.






=A0 Andrey


<=
/div>
<=
/div>




--001a11c3c87e223d3504ec1e26d5--