--0-251550593-1304294966=:84942
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: quoted-printable
Hi everyone,
Okay, I can now claim I fully understand the Klein's Quartic puzzle.=A0 I a=
pologize
for my earlier mistakes, and guarantee that the following formula and calcu=
lations
are accurate, excepting a typo.=A0 I had failed to realize that Klein's Qua=
rtic is very
much like a 3-dimensional puzzle.=A0 It has 'corners' and 'edges'.=A0 I did=
not study the
order-2 puzzle enough to realize that the 'corners' existed.=A0 This is of =
course
obvious to all of you, since you have played with the puzzle more than I ha=
ve, and
many of you have even solved it.=A0 The way the order-3 and higher puzzle a=
ppear
immediately made obvious to me the nature of the 'corners' and 'edges'.=A0 =
The
order-2 puzzle's appearance somewhat disguises its true nature, but that is=
no
excuse for my lack of investigation.
Here is the formula for the number of permutations of the order-n Klein's Q=
uartic
puzzle for odd n >=3D 3:
And here are individual values:
Order-2:
((55!)/2)*(3^53) =3D
123048752649957426169448861190331245749810829958743981704307326752100311\
522831667036160000000000000
Order-3:
(84!)*(56!)*(2^81)*(3^55) =3D
993919860351336970116941239153296103939497528293494685545497421465353823\
867122389570825760861036003717296401423048183458017237535043916628667848529=
348\
418500952983796478875293990282425667716662641223463686191606729487155200000=
000\
000000000000000000000000
Order-5:
(((168!)/((7!)^24))^2)*((168!)/2)*(84!)*(56!)*(2^81)*(3^55) =3D
153813597602981865296923122878293408297707605840877433021601977114757488\
141188456378084938578404431213530399155802876124924501302998795803488994282=
318\
638973392226465765639269482642062480505130632851949992339629771331733910361=
394\
187875621200775783795330499539579105683370865469180184421558825857092857952=
139\
675652574064438504019365838704215066676118844823272520482463359811616584351=
650\
343294082974911191373304636015923982296607487243206304661823823179829496028=
840\
929128708900416627301861209241866736735119716387769997220107174269840158765=
913\
914510643210391000467377130910048027024945418450246083224037558282200707856=
137\
417672596140743196018794757987904441064746702209870189273782494772422622248=
229\
582206349072075076140907820840336618805947675411840837091706167131159031529=
916\
608909239023245119282172250315201115126049303085088200765125878010439058553=
209\
194884800770173580565544960000000000000000000000000000000000000000000000000=
000\
0000000000000000000000000000000000000000000000000000
Order-7:
(((168!)/((7!)^24))^6)*(((168!)/2)^2)*(84!)*(56!)*(2^81)*(3^55) =3D=20
291652081227680814998213157804602335018085364039052280961816073114448730\
392894920023356437101146476284320603185810624757021755947665298890077989550=
883\
885311343466371999384057110413096574296849941236724269152103544645442486218=
695\
076600252096301812306832372577853207239998648950663571317985724006765904739=
680\
977105203817627232866878630402546853197300928140997055230021724053848990847=
216\
551957669431605329014717773898577089777619452520575734359293791029055047460=
576\
974564133092157579429829165447260989008971819817294651225865111987625423736=
784\
401171396455752024547584118386324881866238870218023662586959246641024767000=
358\
285518158311830911257029022642565363726603369418008829918092525995884379417=
405\
670910582899355979014578770936069119778606566775357202755594741592869227544=
047\
178229603580102844151585056303034806574605033952482681047551433264000114310=
716\
924001031918988612472952919237611441342665686598541080344137343237544467454=
063\
349911222948500021047225513530557140871503559750837011458585002994770311031=
339\
781109128549029418138339924851610383224600629274310641062928263251950995560=
148\
937777274448616949465037469723128521933851772717618059366344850213381098526=
318\
319060550935249803574921929117917238519906930661961947706955966404872626429=
782\
132804861306667749534406026729935529881538323975563828330896791908785507675=
059\
773775794278700459656226381696124358922920273604368715840236421715579658507=
382\
365453517371351486086458623588131038391141321230610350870074067038457996241=
667\
720900561881878754648098316208849769503988442111398599945245303613729339183=
849\
167767601179210373127434178110063536344436887129279839469942450678228480290=
417\
935016209791318697331932192833279890869534215446438165799082847867421585376=
427\
125195520939078272991998436471331374584526239824202581947561332987759818220=
178\
449625990739452026138843213446477424511640590394442357826468773763181183467=
355\
539723948286105864976159089388473584954233058380887860737526988800000000000=
000\
000000000000000000000000000000000000000000000000000000000000000000000000000=
000\
000000000000000000000000000000000000000000000000000000000000000000000000000=
000\
00000000000000000000000000000000000000
Order-9:
(((168!)/((7!)^24))^12)*(((168!)/2)^3)*(84!)*(56!)*(2^81)*(3^55) =3D
677582869828578066590514174426477151611690434506950459808287370437586411\
589712092377745815252610930902313658103766880255574538687753843375713294897=
632\
229604198139428110010773285646728126823387215212255969547186353882369700028=
967\
357420423630846160741822346537314280930026018987102915805246070856404614500=
425\
080097246212719291213975788892366066186385076310698582572122488831893325275=
338\
022200576603148637405090301054731728037990100651517592252935578389346975932=
765\
393031787471498515172826138520961440317355862707925533637995776970273715363=
414\
763966001363948789113428479431707402741209524218143534272382729149389093065=
277\
738776510908735266022840504909278164416307388596961383581457574835426043053=
858\
567130861051011559090208050156911206052149351505039750810224644148029574393=
183\
643117846586265363506172950816736400283897320748166942865332312858367774914=
685\
400969693697720325524219880682507206742371460341267136120269318225507969219=
890\
147215159865406150475078930492604815977957514374625438016561144829700944961=
469\
903841769287163517353646630553103279651164614135572024499483587396729352167=
073\
314647757488867863523612624916957271732409936033435795555768007982838821934=
759\
529312703400982479192577976332369625248478885795751249576247219706313028822=
865\
251158674424998015916461969114262493126387933357244586468480986348677384231=
084\
051947741834028586096264224079871413353793237542286834143546953887276596438=
016\
154110548089321896312300275346346285309747824057951560619284748297160126997=
018\
555164003753708299148367101333402034431705143711815830435474957991495425111=
612\
359055249286259249512637496443116519132276856611864187351528116367034140077=
649\
228256600937975605450350463096018689689494317504186472028713476549889531616=
376\
265218640002711615030585980771460377839679256037218151469434036491261624917=
999\
789690125252651753140985992078803105585299781688200576431175253129002734686=
056\
692936038452950797255495408609243046821111989281772950244181499940165613599=
069\
752993108229555644132121597169167501944449522582579165541347370340485791216=
208\
810170273407800901109543642032049395922018609103137870253925946466865040950=
825\
824546115634620984823219064591293138556739533342518609429381273237731039456=
346\
033862977346326049590625286483487039215891508292461576449677325801713807841=
621\
978580747913527131242794907636091311463666958399217772206627407877191823447=
182\
972778655397576328357440033690392795699207683940192423828998570474496739832=
672\
019477652114590214018791934706322664952454443925279628796082488146236072268=
592\
846976676880487114045448401559927701979774401207562058551583086165782131087=
375\
511914244510236734437321250625678331088571958029689058768955878732093815869=
906\
096544425748818588441839626888167846642644935534200259360142428511293980509=
753\
769444013986800173687430173032163302215452990618380458170730647098036066945=
049\
985220622514584487675630337487016621327879705553585461019820126404131837827=
513\
491519322013117934471257069495199166734762494535604267339796974779665699893=
326\
026066490637551663922691469515745734461065858146408933969356951124432041596=
128\
272794916637229823948248584501592347729992029532594860584427611186151786254=
334\
823503820350363849469150455890670118740902566788239032536444855114742741037=
803\
655098630204492498417146997924096033291795233394232609566695291939284728181=
124\
371349676631081443458321783163024319460537095544807147503134516825792732519=
141\
759413323311576933662237655040000000000000000000000000000000000000000000000=
000\
000000000000000000000000000000000000000000000000000000000000000000000000000=
000\
000000000000000000000000000000000000000000000000000000000000000000000000000=
000\
000000000000000000000000000000000000000000000000000000000000000000000000000=
000\
0000000000000000000000000000000000000000000000000000000000000
I have to go now, but thank you all for your patience.=A0 This formula and =
the values
should not have to be corrected this time.
All the best,
David
--0-251550593-1304294966=:84942
Content-Type: text/html; charset=iso-8859-1
Content-Transfer-Encoding: quoted-printable
top" style=3D"font: inherit;">Hi everyone, Okay, I can now claim I f= ully understand the Klein's Quartic puzzle. I apologize for my ear= lier mistakes, and guarantee that the following formula and calculations >are accurate, excepting a typo. I had failed to realize that Klein's= Quartic is very much like a 3-dimensional puzzle. It has 'corners= ' and 'edges'. I did not study the order-2 puzzle enough to realiz= e that the 'corners' existed. This is of course obvious to all of = you, since you have played with the puzzle more than I have, and many of= you have even solved it. The way the order-3 and higher puzzle appea= r immediately made obvious to me the nature of the 'corners' and 'edges'= . The order-2 puzzle's appearance somewhat disguises its true natu= re, but that is no excuse for my lack of investigation. Here is t= he formula for the number of permutations of the order-n Klein's Quartic p= uzzle for odd n >=3D 3: ket.com/albums/y360/djs314/KQ.gif" src=3D"http://i1029.photobucket.com/albu= ms/y360/djs314/KQ.gif"> And here are individual values: Order= -2: ((55!)/2)*(3^53) =3D 123048752649957426169448861190331245= 749810829958743981704307326752100311\ 522831667036160000000000000 >Order-3: (84!)*(56!)*(2^81)*(3^55) =3D 993919860351336970116= 941239153296103939497528293494685545497421465353823\ 8671223895708257608= 61036003717296401423048183458017237535043916628667848529348\ 41850095298= 3796478875293990282425667716662641223463686191606729487155200000000\ 000= 000000000000000000000 Order-5: (((168!)/((7!)^24))^2)*((168!)= /2)*(84!)*(56!)*(2^81)*(3^55) =3D 153813597602981865296923122878293408297707605840877433021601977= 114757488\ 1411884563780849385784044312135303991558028761249245013029987= 95803488994282318\ 63897339222646576563926948264206248050513063285194999= 2339629771331733910361394\ 187875621200775783795330499539579105683370865= 469180184421558825857092857952139\ 6756525740644385040193658387042150666= 76118844823272520482463359811616584351650\ 34329408297491119137330463601= 5923982296607487243206304661823823179829496028840\ 929128708900416627301= 861209241866736735119716387769997220107174269840158765913\ 9145106432103= 91000467377130910048027024945418450246083224037558282200707856137\ 41767= 2596140743196018794757987904441064746702209870189273782494772422622248229\<= br>582206349072075076140907820840336618805947675411840837091706167131159031= 529916\ 6089092390232451192821722503152011151260493030850882007651258780= 10439058553209\ 19488480077017358056554496000000000000000000000000 0000000000000000000000000000\ 000000000000000000000000000000000000000000= 0000000000 Order-7: (((168!)/((7!)^24))^6)*(((168!)/2)^2)*(84= !)*(56!)*(2^81)*(3^55) =3D 291652081227680814998213157804602335018085364039052280961816073114= 448730\ 3928949200233564371011464762843206031858106247570217559476652988= 90077989550883\ 88531134346637199938405711041309657429684994123672426915= 2103544645442486218695\ 076600252096301812306832372577853207239998648950= 663571317985724006765904739680\ 9771052038176272328668786304025468531973= 00928140997055230021724053848990847216\ 55195766943160532901471777389857= 7089777619452520575734359293791029055047460576\ 974564133092157579429829= 165447260989008971819817294651225865111987625423736784\ 4011713964557520= 24547584118386324881866238870218023662586959246641024767000358\ 28551815= 8311830911257029022642565363726603369418008829918092525995884379417405\ = 670910582899355979014578770936069119778606566775357202755594741592869227544= 047\ 1782296035801028441515850563030348065746050339524826810475514332640= 00114310716\ 924001031918988612472952919237611441342665686598541 080344137343237544467454063\ 3499112229485000210472255135305571408715035= 59750837011458585002994770311031339\ 78110912854902941813833992485161038= 3224600629274310641062928263251950995560148\ 937777274448616949465037469= 723128521933851772717618059366344850213381098526318\ 3190605509352498035= 74921929117917238519906930661961947706955966404872626429782\ 13280486130= 6667749534406026729935529881538323975563828330896791908785507675059\ 773= 775794278700459656226381696124358922920273604368715840236421715579658507382= \ 3654535173713514860864586235881310383911413212306103508700740670384579= 96241667\ 72090056188187875464809831620884976950398844211139859994524530= 3613729339183849\ 167767601179210373127434178110063536344436887129279839= 469942450678228480290417\ 9350162097913186973319321928332798908695342154= 46438165799082847867421585376427\ 12519552093907827299199843647133137458= 4526239824202581947561332987759818220178\ 4496259907394520261388 43213446477424511640590394442357826468773763181183467355\ 53972394828610= 5864976159089388473584954233058380887860737526988800000000000000\ 000000= 000000000000000000000000000000000000000000000000000000000000000000000000\r>0000000000000000000000000000000000000000000000000000000000000000000000000= 00000\ 00000000000000000000000000000000000000 Order-9: (((= 168!)/((7!)^24))^12)*(((168!)/2)^3)*(84!)*(56!)*(2^81)*(3^55) =3D 677582869828578066590514174426477151611690434506950459808287370= 437586411\ 5897120923777458152526109309023136581037668802555745386877538= 43375713294897632\ 22960419813942811001077328564672812682338721521225596= 9547186353882369700028967\ 357420423630846160741822346537314280930026018= 987102915805246070856404614500425\ 0800972462127192912139757888923660661= 86385076310698582572122488831893325275338\ 02220057660314863740509030105= 4731728037990100651517592252935578389346975932765\ 393031787471498515172= 826138520961440317355862707925533637995776970273715363414\ 7639660013639= 48789113428479431707402741209524218143534272382729149389093065277\ 73877= 6510908735266022840504909278164416307388596961383581457574835426043053858\<= br>567130861051011559090208050156911206052149351505039750810224644148029574= 393183\ 6431178465862653635061729508167364002838973207481669428653323128= 58367774914685\ 40096969369772032552421988068250720674237146034126 7136120269318225507969219890\ 147215159865406150475078930492604815977957= 514374625438016561144829700944961469\ 9038417692871635173536466305531032= 79651164614135572024499483587396729352167073\ 31464775748886786352361262= 4916957271732409936033435795555768007982838821934759\ 529312703400982479= 192577976332369625248478885795751249576247219706313028822865\ 2511586744= 24998015916461969114262493126387933357244586468480986348677384231084\ 05= 194774183402858609626422407987141335379323754228683414354695388727659643801= 6\ 154110548089321896312300275346346285309747824057951560619284748297160= 126997018\ 5551640037537082991483671013334020344317051437118158304354749= 57991495425111612\ 35905524928625924951263749644311651913227685661186418= 7351528116367034140077649\ 228256600937975605450350463096018689689494317= 504186472028713476549889531616376\ 2652186400027116150305859807714603778= 39679256037218151469434036491261624917999\ 789690125252651753140 985992078803105585299781688200576431175253129002734686056\ 6929360384529= 50797255495408609243046821111989281772950244181499940165613599069\ 75299= 3108229555644132121597169167501944449522582579165541347370340485791216208\<= br>810170273407800901109543642032049395922018609103137870253925946466865040= 950825\ 8245461156346209848232190645912931385567395333425186094293812732= 37731039456346\ 03386297734632604959062528648348703921589150829246157644= 9677325801713807841621\ 978580747913527131242794907636091311463666958399= 217772206627407877191823447182\ 9727786553975763283574400336903927956992= 07683940192423828998570474496739832672\ 01947765211459021401879193470632= 2664952454443925279628796082488146236072268592\ 846976676880487114045448= 401559927701979774401207562058551583086165782131087375\ 5119142445102367= 34437321250625678331088571958029689058768955878732093815869906\ 09654442= 5748818588441839626888167846642644935534200259360142428511293980509 753\ 7694440139868001736874301730321633022154529906183804581707306470980= 36066945049\ 98522062251458448767563033748701662132787970555358546101982= 0126404131837827513\ 491519322013117934471257069495199166734762494535604= 267339796974779665699893326\ 0260664906375516639226914695157457344610658= 58146408933969356951124432041596128\ 27279491663722982394824858450159234= 7729992029532594860584427611186151786254334\ 823503820350363849469150455= 890670118740902566788239032536444855114742741037803\ 6550986302044924984= 17146997924096033291795233394232609566695291939284728181124\ 37134967663= 1081443458321783163024319460537095544807147503134516825792732519141\ 759= 413323311576933662237655040000000000000000000000000000000000000000000000000= \ 0000000000000000000000000000000000000000000000000000000000000000000000= 00000000\ 00000000000000000000000000000000000000000000000000000000000000= 0000000000000000\ 0000000000000000000000000000000000000000000000 00000000000000000000000000000000\ 00000000000000000000000000000000000000= 00000000000000000000000 I have to go now, but thank you all for = your patience. This formula and the values should not have to be c= orrected this time. All the best, David |
=C2=A0
=20=20
=20=20=20=20
=20=20=20=20=20=20
=20=20=20=20=20=20
Hi everyone,
Okay, I can now claim I fully understand the Klein's Quartic puzzle.=C2=A0 =
I apologize
for my earlier mistakes, and guarantee that the following formula and calcu=
lations
are accurate, excepting a typo.=C2=A0 I had failed to realize that Klein's =
Quartic is very
much like a 3-dimensional puzzle.=C2=A0 It has 'corners' and 'edges'.=C2=A0=
I did not study the
order-2 puzzle enough to realize that the 'corners' existed.=C2=A0 This is =
of course
obvious to all of you, since you have played with the puzzle more than I ha=
ve, and
many of you have even solved it.=C2=A0 The way the order-3 and higher puzzl=
e appear
immediately made obvious to me the nature of the 'corners' and 'edges'.=C2=
=A0 The
order-2 puzzle's appearance somewhat disguises its true nature, but that is=
no
excuse for my lack of investigation.
Here is the
formula for the number of permutations of the order-n Klein's Quartic
puzzle for odd n >=3D 3:
And here are individual values:
Order-2:
((55!)/2)*(3^53) =3D
123048752649957426169448861190331245749810829958743981704307326752100311\
522831667036160000000000000
Order-3:
(84!)*(56!)*(2^81)*(3^55) =3D
993919860351336970116941239153296103939497528293494685545497421465353823\
867122389570825760861036003717296401423048183458017237535043916628667848529=
348\
418500952983796478875293990282425667716662641223463686191606729487155200000=
000\
000000000000000000000000
Order-5:
(((168!)/((7!)^24))^2)*((168!)/2)*(84!)*(56!)*(2^81)*(3^55)
=3D
153813597602981865296923122878293408297707605840877433021601977114757488\
141188456378084938578404431213530399155802876124924501302998795803488994282=
318\
638973392226465765639269482642062480505130632851949992339629771331733910361=
394\
187875621200775783795330499539579105683370865469180184421558825857092857952=
139\
675652574064438504019365838704215066676118844823272520482463359811616584351=
650\
343294082974911191373304636015923982296607487243206304661823823179829496028=
840\
929128708900416627301861209241866736735119716387769997220107174269840158765=
913\
914510643210391000467377130910048027024945418450246083224037558282200707856=
137\
417672596140743196018794757987904441064746702209870189273782494772422622248=
229\
582206349072075076140907820840336618805947675411840837091706167131159031529=
916\
608909239023245119282172250315201115126049303085088200765125878010439058553=
209\
19488480077017358056554496000000000000000000000000
0000000000000000000000000000\
0000000000000000000000000000000000000000000000000000
Order-7:
(((168!)/((7!)^24))^6)*(((168!)/2)^2)*(84!)*(56!)*(2^81)*(3^55) =3D
=20
291652081227680814998213157804602335018085364039052280961816073114448730\
392894920023356437101146476284320603185810624757021755947665298890077989550=
883\
885311343466371999384057110413096574296849941236724269152103544645442486218=
695\
076600252096301812306832372577853207239998648950663571317985724006765904739=
680\
977105203817627232866878630402546853197300928140997055230021724053848990847=
216\
551957669431605329014717773898577089777619452520575734359293791029055047460=
576\
974564133092157579429829165447260989008971819817294651225865111987625423736=
784\
401171396455752024547584118386324881866238870218023662586959246641024767000=
358\
285518158311830911257029022642565363726603369418008829918092525995884379417=
405\
670910582899355979014578770936069119778606566775357202755594741592869227544=
047\
178229603580102844151585056303034806574605033952482681047551433264000114310=
716\
924001031918988612472952919237611441342665686598541
080344137343237544467454063\
349911222948500021047225513530557140871503559750837011458585002994770311031=
339\
781109128549029418138339924851610383224600629274310641062928263251950995560=
148\
937777274448616949465037469723128521933851772717618059366344850213381098526=
318\
319060550935249803574921929117917238519906930661961947706955966404872626429=
782\
132804861306667749534406026729935529881538323975563828330896791908785507675=
059\
773775794278700459656226381696124358922920273604368715840236421715579658507=
382\
365453517371351486086458623588131038391141321230610350870074067038457996241=
667\
720900561881878754648098316208849769503988442111398599945245303613729339183=
849\
167767601179210373127434178110063536344436887129279839469942450678228480290=
417\
935016209791318697331932192833279890869534215446438165799082847867421585376=
427\
125195520939078272991998436471331374584526239824202581947561332987759818220=
178\
4496259907394520261388
43213446477424511640590394442357826468773763181183467355\
539723948286105864976159089388473584954233058380887860737526988800000000000=
000\
000000000000000000000000000000000000000000000000000000000000000000000000000=
000\
000000000000000000000000000000000000000000000000000000000000000000000000000=
000\
00000000000000000000000000000000000000
Order-9:
(((168!)/((7!)^24))^12)*(((168!)/2)^3)*(84!)*(56!)*(2^81)*(3^55)
=3D
677582869828578066590514174426477151611690434506950459808287370437586411\
589712092377745815252610930902313658103766880255574538687753843375713294897=
632\
229604198139428110010773285646728126823387215212255969547186353882369700028=
967\
357420423630846160741822346537314280930026018987102915805246070856404614500=
425\
080097246212719291213975788892366066186385076310698582572122488831893325275=
338\
022200576603148637405090301054731728037990100651517592252935578389346975932=
765\
393031787471498515172826138520961440317355862707925533637995776970273715363=
414\
763966001363948789113428479431707402741209524218143534272382729149389093065=
277\
738776510908735266022840504909278164416307388596961383581457574835426043053=
858\
567130861051011559090208050156911206052149351505039750810224644148029574393=
183\
643117846586265363506172950816736400283897320748166942865332312858367774914=
685\
40096969369772032552421988068250720674237146034126
7136120269318225507969219890\
147215159865406150475078930492604815977957514374625438016561144829700944961=
469\
903841769287163517353646630553103279651164614135572024499483587396729352167=
073\
314647757488867863523612624916957271732409936033435795555768007982838821934=
759\
529312703400982479192577976332369625248478885795751249576247219706313028822=
865\
251158674424998015916461969114262493126387933357244586468480986348677384231=
084\
051947741834028586096264224079871413353793237542286834143546953887276596438=
016\
154110548089321896312300275346346285309747824057951560619284748297160126997=
018\
555164003753708299148367101333402034431705143711815830435474957991495425111=
612\
359055249286259249512637496443116519132276856611864187351528116367034140077=
649\
228256600937975605450350463096018689689494317504186472028713476549889531616=
376\
265218640002711615030585980771460377839679256037218151469434036491261624917=
999\
789690125252651753140
985992078803105585299781688200576431175253129002734686056\
692936038452950797255495408609243046821111989281772950244181499940165613599=
069\
752993108229555644132121597169167501944449522582579165541347370340485791216=
208\
810170273407800901109543642032049395922018609103137870253925946466865040950=
825\
824546115634620984823219064591293138556739533342518609429381273237731039456=
346\
033862977346326049590625286483487039215891508292461576449677325801713807841=
621\
978580747913527131242794907636091311463666958399217772206627407877191823447=
182\
972778655397576328357440033690392795699207683940192423828998570474496739832=
672\
019477652114590214018791934706322664952454443925279628796082488146236072268=
592\
846976676880487114045448401559927701979774401207562058551583086165782131087=
375\
511914244510236734437321250625678331088571958029689058768955878732093815869=
906\
096544425748818588441839626888167846642644935534200259360142428511293980509
753\
769444013986800173687430173032163302215452990618380458170730647098036066945=
049\
985220622514584487675630337487016621327879705553585461019820126404131837827=
513\
491519322013117934471257069495199166734762494535604267339796974779665699893=
326\
026066490637551663922691469515745734461065858146408933969356951124432041596=
128\
272794916637229823948248584501592347729992029532594860584427611186151786254=
334\
823503820350363849469150455890670118740902566788239032536444855114742741037=
803\
655098630204492498417146997924096033291795233394232609566695291939284728181=
124\
371349676631081443458321783163024319460537095544807147503134516825792732519=
141\
759413323311576933662237655040000000000000000000000000000000000000000000000=
000\
000000000000000000000000000000000000000000000000000000000000000000000000000=
000\
000000000000000000000000000000000000000000000000000000000000000000000000000=
000\
0000000000000000000000000000000000000000000000
00000000000000000000000000000000\
0000000000000000000000000000000000000000000000000000000000000
I have to go now, but thank you all for your patience.=C2=A0 This formula a=
nd the values
should not have to be corrected this time.
All the best,
David
=20=20=20=20
=20=20=20=20=20
=20=20=20=20
=20=20=20=20
=20
=20=20
--0-693570556-1304303453=:42929
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: quoted-printable
top" style=3D"font: inherit;">Well, I made a typo. I am having the wo= rst time with this!! It was just a typo, but it affected the order= -2 value (as the typo was in the program I used to calculate the value),= which is fortunately the least important value and not handled by the f= ormula. Believe it or not, I was actually foolish enough to rush the = email, as I had to be somewhere. Sometimes I make poor decisions, = such as when I left the group. There is a reason for this, but I'd= rather not elaborate. Suffice it to say I can get very excited an= d will post without thinking things through. I'm quite frustrated = about this whole mess, and am beginning to once again doubt my place her= e. I appreciate that I somehow seem to be accepted. Thank you a= ll for your infinite patience with my less than acceptable behavior. Order-2: ((55!)/2)*(3^54) =3D 3691462579498= 72278508346583570993737249432489876231945112921980256300934\ 56849500110= 8480000000000000 All the best, David --- On Sun, 5/1/11= , David Smith <djs314djs314@yahoo.com> wrote: ing-left: 5px;"> From: David Smith <djs314djs314@yahoo.com> Sub= ject: [MC4D] Klein's Quartic n-order formula and specific values To: 4D_= Cubing@yahoogroups.com Date: Sunday, May 1, 2011, 8:09 PM =3D"yiv1275103581"> =20=20=20=20=20=20 =20=20=20=20=20=20
--0-693570556-1304303453=:42929-- |