A Derivation of an Upper Bound for the Number of
Configurations of an nxnxnxn Rubik's Cube

By David Smith

1. Introduction

C,(n) is a formula for an upper bound of the numdetistinguishable configurations of an nxnxnxn

Rubik's Cube, which will be derived in this papérwill be assumed that the reader is familiarwvat
4-dimensional Rubik's Cube. Online, one can fimgftee computer program Magic Cube 4D,
developed by Melinda Green, Don Hatch, and Jay &dyilt, which is a completely interactive
representation of a 4-dimensional Rubik's Cube vamidh was the inspiration for this paper and much
of my other work An FAQ page has been provided to help familianiees users with the necessary
concepts of higher dimensions and how Rubik's Cwlmesd function in these spaces. Additionally, a
solution guide has been provided by Roice Nelsdm is another pioneer in the research of higher-
dimensional puzzles. His creations include the frmgrams MagicCube5D, which was written along
with Charlie Nevill, and Magic120Cell, which argresentations of a 5-dimensional Rubik's Cube and a
puzzle based on the 120-cell, respectielyl.would like to thank Roice in particular for lisntinual
support and encouragement, which includes bothrigpttis paper and my other work on his website,
and proofreading this paper while it was being ¢ttgyed. Roice found many oversights and errors, all
of which have been corrected, and provided singaliffons and new ideas. His creations MagicCube5D
and Magic120Cell have also inspired me, and my wef&cused on these programs as well. It should
also be mentioned that my discoveries would noehmeen possible without the previous investigations
of H. J. Kamack and T. R. Keane in their paper, € Rubik Tesseract"; it was used extensively in

developing sections 3 and 4 of this pabdiric Balandraud's article, "Calculating the Petations of
4D Magic Cubes", was also helpful, and greatlysdsdime in examining the properties of

4-dimensional Rubik's Cubags.
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We will deduce this formula in two stages. Fivgg, will calculate the specific values of(6) for
2<n<8. Then we will generalize our findings and buhd formula up term by term.

3. The Z Cube

A 2* Rubik's Cube consists of 16 corner pieces, eatthfairr stickers (which are also called facelets).
There is an important note to be made for cubegrdatg the number of pieces per edge. If itis @d
odd cube), we can fix the central 1-colored piesgdace and observe how the other pieces pernmate a
orient around them. This is valid because theraépteces never move relative to each other, amd w
can therefore fix them in space. Note also thahexer have to consider making a slice move that
repositions the central pieces because this is/alguit to rotating all of the other parallel layarghe
opposite direction and reorienting the entire cube.

For cubes with an even number of pieces per edgev@n cube), such as the ®e will need a way to
fix the cube in space so that we do not inadvdgteaunt extra configurations due to the fact tiat
entire cube can rotate in 4-space. This can bengglished by fixing a corner piece in place, andgis
it as a point of reference in the same mannereséhtral pieces for an odd cube.

Now, back to the®ube. We count*2 16 pieces, all of which are corners with fowrefiets each. To
determine the number of permutations the corneregiean attain, we examine what takes place when
we make a 90 degree face rotation. Observe thaiewer need to consider other types of rotations
because any possible face rotation can be repeskaata sequence of 90 degree face rotationsicin s
a rotation, 8 corner pieces change position irfadh@ of two 4-cycles, which is an even permutation.
Thus the number of ways the corners can be pernmitegl/2, dividing by two because of the even
parity. However, remember that we must fix oneneoiin place, making the count 15!/2.

To determine the number of ways the corners casribated, we restate here the method discovered by
T. R. Keane and H. J. Kamack, and described im gager, "The Rubik Tesseract". This is the only
section in this paper which makes use of basicgtbeaory concepts.

In their paper, Keane and Kamack first describéttiere are 24 permutations of the facelets of a
4-colored piece, comprising thg @oup (The symmetric group on four letters.) Thegcribe

orientations using cycle notation of the four fatg| labeled a, b, c, and d.

The 24 different orientations can be broken dowto faur crosses, (ab)(cd), (ac)(bd), (ad)(bc), e
identity; eight 3-cycles, called twists; six 2-oys] and six 4-cycles. However, for corner piecea o

cube of any dimension, only even permutations efféltelets can occur, because the odd permutations
are mirror images. Thus, 2-cycles and 4-cycles aoccur because they are odd permutations.

Hence, each corner piece can only be oriented iney®. The even permutations are all possible, and
form the alternating group,A Keane and Kamack continue by observing thattbsses are a normal

subgroup of the alternating group they call N. So,
N ={l, (ab)(cd), (ac)(bd), (ad)(bc)}

The cosets of N form the twists, which they cadiriel Z:



S = {(abc), (adb), (acd), (bdc)}
Z = {(acb), (abd), (adc), (bcd)}

They then note that the sets N, S, and Z form tiigient-group of Aby N, in which N acts as the
identity:

A4_
~ - INSZ}

We can then see that the group multiplication téble

From this table, we can see that this quotientqgtieusomorphic to the group of residue classes] &10
This means that we can assign the number 0 toe\hdmber 1 to S, and the number -1 to Z, and adding
these numbers mod 3 is the same as taking the @sdiielements of these subgroups.

If we can now show that the sum of the orientatiointhe corners (counting O for an orientation in N
etc.) mod 3 always remains constant, we will be &bldetermine the final restriction on the numtder
orientations of the corners. The orientationsloawdefined by assigning, to each corner, a latteath
facelet and each position of each facelet. Theh eaentation can be described by a four-lettengpt
(e.g. ABCD) relative to the position it is occupgin

When pieces rotate in a cycle, their facelets wmlerdisjoint cycles if they have n facelets. Vda see
that every cycle of four corners boils down to fdueycles of facelets. We must show that in adley
of pieces, the sum of the orientations of the mened 3 does not change. The simplest way toido th
is to first prove that this is true for a 2-cyclepteces.

Consider a 2-cycle of corners:

ABCD 1
ABCD 2

Each row represents a corner piece. The 2-cyéliexelets are vertical in direction. For example:

ABCD 1
CDAB 2

This means that facelet A on piece 1 goes wheeda€ on piece 2 was, etc. In this example, plece
performed an N-twist. Now notice that since wedealing with cycles, the facelets of piece 2 must
return to the original positions of the faceletpi@fce 1. Therefore, piece 2 also performed an iNktwit



can be checked that if piece 1 performs a Z-twiste 2 performs an S-twist, and if piece 1 perfoan
S-twist, piece 2 performs a Z-twist. Therefore, $hen of the values mod 3 does not change, andsqual
zero.

Now we simply note that a cycle of pieces of amgtl can always be expressed as a product of
2-cycles, implying that the sum of the orientati@ues mod 3 equals zero regardless of the lerfgth o
the cycles involved. It follows that this is trfg the corners of the*Zube as a special case. Since an
N-twist is 0, we can have an isolated N-twist withaffecting any other pieces. The value S - Z must
therefore be congruent to zero, mod 3.

This means that the first 15 corner pieces can bach any of 12 orientations. If the value of

orientations up to that point is 0, the remainiaduye must be an N-twist. Ifitis 1, the remainuzdue
must be a Z-twist, and if it is -1, the remainirgjue must be an S-twist. In each case there are fo
possible orientations left for the last corner piedherefore, the number of orientations the asrnan

achieve is 1¥/3.

However, we must fix the orientation of the fixemtrer as well, making the complete count of
configurations of the*xube:

151 12*° _

2 3

3357894533384932272635904000.

It should be clear that the arguments presentezldpgly to the corners of cubes of any size.

4. The 3 Cube

Now we will consider the“ube. We can count that there are 8 immobileetentThere are also 24
2-colored pieces, because each face containsesigpand each piece lies in two faces, giving)(@ =
24 pieces. Similarly, there are (8%3 = 32 3-colored pieces and of course 16 cquieares.

Now we once again observe what happens when wee tace 90 degrees. We get two 4-cycles of the
corner pieces, three 4-cycles of the 3-coloredgsieand one 4-cycle of the 2-colored pieces. We
observe that the number of permutations the cowarsachieve is once again 16!/2 (we do not need to
fix a corner piece this time), and it should beacléat the permutation and orientation countsouad

for the corners in the preceding section will himidcubes of any size, taking into account thedixe
corner piece for even cubes.

We also see that the permutations for both thel@ed and 3-colored pieces are odd, but notice that
these odd permutations of pieces must occur togetteking their combined parity even. Thus, the
number of permutations the 2-colored and 3-colpiedes can achieve is (282!)/2. To get the total
number of permutations, we multiply these two ceungether, obtaining:

241:32! 16!
2 2

We must now examine orientations. For the 2-col@ieces, it is clear that in a face rotation tresee
an even number of 4-cycles of facelets, implyirgf the orientations of the first 23 pieces deteentire



orientation of the remaining piece. Therefore,thenber of orientations the 2-colored pieces ctammt
is 242,

The 3-colored pieces are a bit trickier. Eachheft can have 3! = 6 permutations of its facelgte

can see that in a face rotation, there is an oddygation of the facelets, so it might appear thate

are no restrictions on the orientations of the @l pieces. Note, however, that the odd pernwttat
of the facelets occurs along with the odd permaatif the 3-colored pieces themselves, implying tha
the orientations of the first 31 pieces determireefarity of the orientation of the last piece.isTik
because the parity of the facelets is determineithéyarity of the pieces themselves, and thupainiey
of the last piece's orientation is fixed by theifyasf the others' orientations, such that theimbmed
parity matches the parity of the permutation ofgilexzes. Each piece has three odd orientationse(th
2-cycles of two of the facelets) and three evearaations (two 3-cycles and the identity). Thisame
that the last piece can only have three differeieintations, giving the total number of orientagaf

the 3-colored pieces a¥’®.

The number of orientations of the corner piecedteesame as they were for tfe@be, namely 12/3,
without the restriction of the fixed corner. Mplifing together the orientation counts for eactetgp
piece, along with the permutation count we obtaaieove, gives

241-321 16! 2% 6% 12'° _
2 2 2 2 3

1756772880709135843168526079081025059614484630189587715602173323679897016855060
0274887650082354207129600000000000000

as the total number of configurations for thegbe.

5. A Note on Notation

In order to study cubes larger than tgit3will be useful to develop a better systemraming the
pieces under consideration than simply referrinthéonumber of facelets a piece has. This is lscau
on larger cubes, there are often multiple grougsetes with the same number of facelets.

We shall denote by the tefflamily a complete group of pieces that can occupy the ggsitions on a

cube throughout all possible configurations. Bamaple, on a’5cube, there are two families of
3-colored pieces and three families of 2-colorestes.

The notation system that follows is useful in fdimensions, but is even more valuable in dimensions
five and above. The basic idea is to classify famiof pieces by the dimension of the section ey
located in. To make this more explicit, consider 4-colored corner pieces. If the Rubik's Cubeewe
replaced by an actual tesseract, a corner woudddment, or dimension zero. So, we will refer to a
corner piece as a (0D) piece. 3-colored piecddwitalled (1D) pieces, 2-colored pieces will b#er
(2D) pieces, and 1-colored pieces will be calldd)(Bieces. This classification of a piece by the
dimension of the section it resides in will be edlthetype of that piece. Also, the terragion will refer

to a section that contains connected pieces oécifaptype. For example, on 4 &ube, a (1D) region is
a 3x1 section that holds three (1D) pieces.

So far, this only appears to be a relabeling ofpileees based on their location on the cube, wésems
redundant due to the fact that the number of fé€ele a piece is itself determined by the locatibn



that piece on the cube. However, the key idekiss For (nD) pieces, where>n3, we continue to break

down the location of the piece until we have 8. For example, consider 4dube. Its (3D) pieces on
a single face form a 3x3x3 cube. The pieces ordheers of that cube will be called (3D)(0D) pigce
the edges, (3D)(1D) pieces, and the faces, (3D)(2&xes, while the term (3D) pieces will continae t
denote the entire group of pieces. (Note thateéhm (3D) pieces will often be excluded when refegri
to types of pieces in general, as it representsipfeipiece types.) The center piece will be nefdrto

as a (3D) center, the term center always beingveddor a piece that lies at the center of théoreg is
located in. It should also be noted that oubes, when & 6, all of the the (3D) pieces other than the
center are broken down into either (3D)(0D), (3M))1or (3D)(0D) pieces regardless of the depth of

each piece within the face. For example, takéae. The (3D) pieces in the inner 3x3x3 seatidin
be broken down in the same manner as if they vieré3D) pieces in the*Bube in the example above.

There is another observation to be made regartimgdncept of regions. When considering regions fo
a type of piece that is subclassified (i.e. (3D)(aBRd (3D)(2D) regions for 4-dimensional cubes), a
group of pieces of such a type will be broken separate regions according to the dimension of the
subclassification. To make this completely cleansider a ¥cube. A single face has one (3D) region,
which is the complete 5x5x5 section of (3D) piesedhat face, as expected. Also, that face halyéwe
(3D)(2D) regions: Six of them are 3x3 sections3i)(2D) pieces (in the outer layer of the (3D)
pieces), and the other six are 1x1 sections of(@D)pieces (in the inner layer of the (3D) piecedje
count these regions as separate, so that eactmiieg@®-dimensional group of pieces, even thowgih e
3x3 region is connected to the piece of the coordimg 1x1 region. We can also see that there are
twelve (3D)(1D) regions, six of which are 3x1 sent of (3D)(1D) pieces, and the remaining six 1x1
sections of (3D)(1D) pieces. It should now be rclghat is meant by a (3D)(2D) and (3D)(1D) center
on a cube of any size.

This notation system, or one which uses similaicepts, is essential when consideriﬁgurbes when
d>5. For example, if d = 6, we can have (5D)(4D)(pi2ces, (4D)(1D) pieces, or even
(5D)(4D)(3D)(0D) pieces!

There is one more distinction to be made. We ladready defined what we mean by a center piece.
The rest are eith&ings ornormals. Wings are pieces that only occur on a (2D) @)(3D) region.
They are the pieces that do not lie on the maigatials of the (2D) or (3D)(2D) region or (in thesea
of an odd cube) on the lines that divide the regnvo four equal square quadrants. Pieces that are
neither wings nor centers will be called normaigept for (0D) and (3D)(0D) pieces, which can siynpl
be referred to as pieces without confusion.

To help with visualizing the pieces, here are daagg of a 5x5 and 6x6 (2D) (or (3D)(2D)) region, in
which the normals have been marked with an x:

X X

X X

A
PP

A PK
X K

ALK




Finally, here is a list of all possible types oéges on a 4-dimensional cube:

(OD) pieces (corners)
(1D) centers

(1D) normals

(2D) centers

(2D) normals

(2D) wings

(3D) centers
(3D)(0D) pieces
(3D)(1D) centers
(3D)(1D) normals
(3D)(2D) centers
(3D)(2D) normals
(3D)(2D) wings

(4D) pieces (pieces inside the cube with no fasglet

This system may seem abstract at first, but it bélihecessary to understand it well to follow e of
this paper.

6. The 4 Cube

The 4 cube will introduce some fundamental concepts whiitl apply to all larger cubes. We will also
begin to study the families of pieces using thetioh introduced in the section above.

The following chart and diagram will be used frdmstpoint onward to summarize the piece-counting
situation:

(OD) pieces - 16

(1D) normals - 64 (64 = (22-8)/3)
(2D) normals - 96 (96 = (6-8)/2)
(3D)(0D) pieces - 64 (64 =8)

Each type of piece is represented by a row indgh&t. To the right of each hyphen, the number of
pieces in each family contained in that type otpies displayed. (If there is more than one farfulya
particular type of piece, the number of piecesamhewill be listed, separated by a comma.) Foheac
cube chart, calculations will be provided whichghekplain how the counts were arrived at, preseased
they are in this4chart. The diagram aids in visualizing the faesili It displays each layer of a face of
the cube from left to right, moving from the out@snlayer to the layer nearest the center. (Th&ecen
layer will not be included for odd cubes.) Eachnilgt of pieces will be represented exactly once by



displaying the type of that piece, written as 2,130, 31, or 32, on one of the pieces in the lfami
Here we see the outer layer of a face on thewatt, its (OD), (1D), and (2D) piece families marked
appropriately, and the same with the family of (D)) pieces in the inner layer. We will begin by
considering the number of permutations of eachlfaafipieces, starting at the top of the chart.

We first remember that the number of permutatidrtb® (OD) pieces is 15!/2, as always taking the
fixed corner into account. Now, consider a 90 dedace rotation. It should be clear that the
permutations and orientations of the pieces in éaciily will be of even parity, and that this isaltrue
for all even cubes. This is due to the fact thatgermutations of the pieces and their facele¢saain
family will consist entirely of an even number ot¥cles, by the symmetrical nature of the facearof
even cube. We can also make a 90 degree sliageormtavhich we can visualize as a normal face
rotation in which each type of piece is now locatadhe corresponding section of the cube of one

lower dimension. For thé*4ube, the (3D)(0D) pieces are now located in # pieces' positions, the
(2D) pieces are located in the (1D) pieces' pasitiand the (1D) pieces are located in the (OD)gsie
positions. The (OD) pieces are never moved byca sbtation. Additionally, the pieces in the (30D)
pieces' locations are now (4D) pieces, which waataconsider in our analysis because they areensid
the cube and are not visible in 4-space. We cartlred because a slice move has essentially the sam
form of a face rotation, with the only modificatitimat the pieces are now in different positions, th
permutations of all pieces and their facelets still be even for all even cubes, and thus we naged

to consider odd permutations on such cubes.

The (1D) normals come in 32 pairs of identicalljoced pieces, so it might at first appear that wesim
account for this. However, it turns out that tweqges of the same appearance can never occupy the
same position and orientation, and are therefavaya distinguishable from each other. We canlsise t
by imagining a fourth sticker on each piece in & phpieces with the same colors. The stickeeanoh
piece is located on the face of the piece thatljscant to the other piece (which is hidden froewwi

so that the two extra stickers touch each otheaaticH that this fourth sticker is fixed in place tmy
position a piece can occupy (always being closestd center of the (1D) region). Because eactepie
now has four stickers, and the fourth stickerxediin place for each possible position, it folloivat an
odd permutation of the three real stickers of agigan never occur for a piece fixed in a certain
position. This is because if it were to do so,aiNd become its own 4-dimensional mirror image.

This implies that each piece can only be in thmeentations. (We will get back to this more later.)

Now, observe that two matching (1D) normals haeestime appearance when viewed in 4-space (when
in corresponding orientations), and in order foe émoccupy its neighbor's position, it would

necessarily flip, thus its facelets would be of agife parity than its neighbor's would be in thenea
position. It follows that two identically colorgieces can never occupy the same position and
orientation, because if they could, they could lmvea to either of the two of their home positiomghie
same position and orientation, which we just shoisechpossible. Thus, the 64 pieces are all
distinguishable from each other, and so the nurabpermutations they can attain is 64!/2.

Another insight will be required to count the numbepermutations of the (2D) normals. They come i
24 groups of four matching pieces each, and timie these pieces can occupy the same position and
orientation. We see that we should consider idel§icolored pieces as identical when counting the
permutations (so that we never count two positasiseparate that differ only in the repositionifg o
matching pieces amongst themselves). This is Isecas would be overcounting if we did not do so,
when multiplying by the number of orientations.si@garding parity for now, we can see that the
number of permutations is 96!/ This is because if we consider all of the pietmebe different, we
obtain 96! positions. Now notice that each grotifpar matching pieces can be permuted 4! = 24
different ways amongst themselves, and so therZareatching positions for every possible
permutation. Therefore, we must divide by 24 factegroup of matching pieces, obtaining 967{p4
different positions.



Now, to consider how parity affects our count, veea have but one simple realization - swapping two
identical pieces changes the parity, but not trgtjpm. This means that parity constraints have no
effect when counting the number of permutationa t&€mily with identical pieces. We can see this by
observing that we can achieve any of the possiimptations by incorporating a swap of two idertica
pieces when swapping two others. Therefore, ountcabove is already correct and does not need to b
modified.

Finally, the (3D)(0D) pieces come in eight groupsight identical pieces each, giving 64!/(8%s the
count of these pieces by the reasoning given abdties makes the total number of permutations:

15! 64! 96! 64!
2 2 2% (81)®

Now for orientations. We already know that theentation count for the corners is'¥3. For the (1D)
normals, we will have to make one more importarsepation. We already know that there are three
possible orientations for each piece. The onlygheft to consider is how the orientations of fingt 63
affect the orientation of the last one. We canarsargument similar to Keane and Kamack's reagonin
above for the orientations of the corners to shmat the last piece is fixed by the first 63. Te #as,

we have as the possible permutations of faceletalternating group A This time, we have the

identity, I, the 3-cycle (abc) which we will calh&-twist, and the 3-cycle (acb) which we will call
Z-twist. The multiplication table is once again:

I S Z
I I S Z
S S Z I
Z Z I S

This implies that we can count | as O, S as 1,484 -1, and adding these numbers mod 3 is idémdica
performing each twist, as before. The same reagas before also shows that the sum of these
orientation values mod 3 is always zero. Therefibre sum of the orientation values of the firs{(&B)
normals determines the twist of the last, and thentfor the number of orientations of the (1D)mats

is 393.

The (2D) normals are simple, as we know that thigypaf the (2D) normals'’ facelets is even, thus
implying that the orientation count i€%2. Finally, the (3D)(0D) pieces have no oriematithus
making the complete count for the number of configjons of the 4cube:

15! 64! 96! 64! 12° 3% 2% _
2 2 2% (8n® 3 3 2

1304656395246053093686346200445281228590254884388323482221544701493566589669139
59820495692694014705936625284924 7482898636104 7084160866897307590845202461293100
4682932142629585911947394377274309454693844903647847550801897750293894453665815
57282925775890742512891980886261625960499721010@0000000000000000000000000000000



000000000.

It can be seen that the reasoning for the pernouand orientations of the (1D) normals apphjhto t
(1D) normals of a cube of any size, with the orfigrge in our imaginary stickers argument being to
place the imaginary sticker on the face of the (dBmal that is closest to the center of the (ldgjon,
as the (1D) normals on larger cubes are not alaedjmcent to the other (1D) normal in their family.
Also, the reasoning for families with identical és clearly holds for any such group.

7. The 5 Cube

Here are the piece-counting chart and diagramhi®Btcube:

(OD) pieces - 16

(1D) centers - 32 (32 = (12)/3)

(1D) normals - 64 (64 = (22-8)/3)
(2D) centers - 24 (24 = (8)/2)

(2D) normals - 96, 96 (96 = (@-8)/2)
(3D)(0D) pieces - 64 (64 =8)
(3D)(1D) centers - 96 (96 = 13)
(3D)(2D) centers - 48 (48 =8)

32

We can see that the number of types and familiggeaks is growing quickly as we increase the sfze
the cube. We have our 16 (0D) pieces as alwape. (ID) pieces reside in a group of 3x1 (1D) regjion
with the counts given above. The (2D) piecesaeated in a group of 3x3 (2D) regions, in whichréhe
are two families of (2D) normals, and one of (2Bhters. Finally, the (3D) pieces are divided thice
separate subtypes: The (3D)(0D) pieces, the (3D)¢eDters, and the (3D)(2D) centers. Of course, we
do not consider the (3D) centers as they are ooravable reference points.

In a 90 degree face rotation, we find odd permomatiof the (1D) centers, (2D) centers, (3D)(1D)
centers, and (3D)(2D) centers, and even permutatmmall other families of pieces. We see thatdee
not need to consider that the (3D)(1D) and (3D)(2&)ters come in odd permutations, because of the
fact we discovered earlier that parity constragdsiot apply to families that contain identicalqas.
Therefore, we only need to consider odd permutatairthe (1D) and (2D) centers. With a bit of
thought, it can be seen that this is true for aaloes of any size, as all of the other familiesietes

either contain identical pieces, or are (1D) nosnahich always come in even permutations. If we
now consider the slice moves of an odd cube ofserg/ (realizing that there is more than one slicgen

for cubes of size*and larger), we see that the only families of egethat have odd permutations are
(2D) normals and (3D) pieces. (2D) normals and)(@Bces always come in families that contain



identical pieces, so they do not need to be coresideith regards to parity.

Thus, we have proven that on an odd cube of amy gz only families that need to be addressed for
having odd permutations of their pieces are (10) @D) centers. All other families either come in
even permutations, or contain identical piecesdindot need to be considered.

As for orientations, on any odd cube we see thigt @D) centers need to be addressed for having an
odd permutation of facelets. This is because we b&ready found (OD) pieces and (1D) normals to
come in even orientations, (2D) pieces containfaeelets per piece, and thus come in even
permutations of facelets, and (3D) pieces haverimmitions. Slice moves never move (1D) centers,
and hence we have proven that on an odd cube dfiaeythe family of (1D) centers always has an odd
permutation of its facelets, and is the only fanafypieces that does so.

This analysis of the parity situation of odd cubéany size, along with our similar study of everbes
of any size, will make things much easier in thetisas to come. We will now begin counting the

permutations of the*®ube, starting at the top of the chart.

We already know that the corners have 16!/2 pernams. By following the same reasoning we used
for the 3 cube, we see that the number of permutationseoft®) and (2D) centers is (28R!)/2. For

the (1D) normals we remember, as we mentionedeipthvious section on thé dube, that the count
obtained there will apply to the (1D) normals oy anbe. Thus, the number of permutations of the
(1D) normals is 64!/2. Each of the two familieg2D) normals come in 24 groups of 4 identical pgec

each, and so the count for each family is 96¥(24Similarly, the count for the (3D)(0D) pieces is
641/((8")%), the count for the (3D)(1D) centers is 96!/((Bg1hnd the count for the (3D)(2D) centers is
481/((6"8). Multiplying all of these counts together, wetaih

16! 24!-32! 64! ( 96! jz_ 64! 96! 48!
2 2 2 (24) (8)® (121® (61)°
as the number of permutations of tHe8be.

We will now study orientations. We know that therers have 14/3 orientations, as before. The (1D)
centers have®d2 orientations, by the same logic that was useHer® section. Additionally, the (1D)
normals have%/3 orientations, because the reasoning in the pusvsection for the (1D) normals on
the 4 cube applies to all larger cubes. The (2D) cerfterve 2¥/2 orientations, and each family of (2D)

normals has%/2 orientations, as we proved above they come ém @ermutations of facelets. Of
course, the (3D) pieces have no orientations. iMuing all of our counts together, we obtain as th

number of configurations of thé Bube:

2
16! 241321 64! ( 96! \> 64! 96! 48 _1216.632.364_224.(296) _
2 2 2 (2424) 8n® (2n® Hy* 3 2 3 2 |2

1236570569238990026982278057783878089337696660835970345244675638825481620700008
2373060841427305986377058600083008441822877476Y36884315751080178664887107264876
848935590538625767958284656419396560246923935086868625384165866873326263467921778
6838629613897708319260398896017331932751125782888883526925847925558456540351327
09917653433545114104520900253753575503146896116089214712492137716092251416854303
97244846995444491712964445168337527590648362346B8083663232956462751569098735992
2472309274735971307144674279155298250014674138084087257220682520596555932663885



3240055395996672769449263104000000000000000000000000000000000000000000000000000
000000000000000000000000000000.

8. The 6' Cube

We begin our analysis of thé éube with its piece-counting chart and diagram:

(OD) pieces - 16

(1D) normals - 64, 64 (64 = {22-8)/3)
(2D) normals - 96, 96 (96 = (@-8)/2)
(2D) wings - 192 (192 = (8-8)/2)
(3D)(0D) pieces - 64, 64 (64 =8
(3D)(1D) normals - 192 (192 =122-8)
(3D)(2D) normals - 192 (192 =@-8)

32 0

We see that a (1D) region contains two familie€l&f) normals, each with 64 pieces. The diagram and
calculations above should also make the counth&®(3D) pieces clear, noting that a (3D)(1D) ndrma
can be brought to its neighbor's position in i®)@D) region with a minimum of three 90 degreeefac
rotations. It should begin to be apparent thany type of piece, each family will contain a camst
number of pieces, regardless of the size of the culthe number of families that type of piece aorg.

In a (2D) region, there are two families of (2Dymals and one of (2D) wings. It is not immediately
clear whether there should be one or two familig2D) wings; at first glance it may not appearttha
such a piece can be moved to occupy its neighposiion. In fact, this cannot be done by rotating
single face, but it can be accomplished by rotatiudfiple faces. The simplest way to do this wolbokd
to rotate three adjacent faces so that the ouger that the piece is located in is first remowvexhf its
face, then brought back to its original positiapged.

It can now be determined that the orientation ehg@D) wing is fixed for each position it can opgu
This implies that a (2D) wing and its neighbor c&ver be in the same position and orientation. Our
method will be similar to the method used to essalthe analogous result for the (1D) normals.

We imagine attaching a third sticker to the facamfrbitrary (2D) wing that is touching its neighb
(this sticker is hidden from view in 4-space), ahderve that this sticker is fixed in place forteac
position the piece can occupy, always being neikstoeighbor. Next, we attach a fourth sticketit®
face of the (2D) wing that is adjacent to the (2ZDjmal in the innermost layer of the face, andmgai
note that this sticker is fixed in place for anypion the piece can occupy. Hence, we can thirdaoh
(2D) wing as a 4-colored piece.



Therefore, because two of the four stickers off2) (Ring are fixed for any position the piece can
occupy, the other two must be as well, for othesvitee piece would become its own mirror image,
which is not possible. This implies that a (2Dphg/iand its neighbor can never be in the same positi
and orientation, as for one to occupy its neiglsbpo'sition it would necessarily flip, causing sl
stickers to be of opposite parity than its neighboaould be in that position. It can be observe t
these results for the (2D) wings apply to the (2)gs of a cube of any size, the only change in the
arguments being to place the additional stickertherfaces of each piece which correspond to ttesfa
with additional stickers on thé 6ube. These two stickers are always uniquelytifieth because they
are always different distances from the edge otthze.

We are now ready to count the permutations anaiatiens of each family of pieces in tHedBibe.
We will start with the permutations, at the toglod chart.

The corners, of course, have 15!/2 permutationg. Kkbw from previous sections that each family of
(1D) normals has 64!/2 permutations, giving (64143 the count for both families. We also know that
the (2D) normals have 96!/(%% permutations for each family, making the tota!(@4%%)? for both.

The (2D) wings are a family of 192 pieces, but¢hare identical pieces in this group. Because this
family comes in groups of eight identically colongiéces, and a piece and its neighbor can never be
the same position and orientation, it follows tthet (2D) wings consist of 48 groups of 4 identical
pieces each. Thus, there are 192!/{&45 1921/(24®) permutations of the (2D) wings. The (3D) pieces
follow the same rules for families with identicaépes: There are (64!/((8)Y permutations of the

(3D)(0D) pieces, 192!/((24) permutations of the (3D)(1D) normals, and 1924{f) permutations of
the (3D)(2D) normals. Multiplying these permutati@ounts together, we obtain the number of

permutations of the*&ube:

15!_(_@41)2_( 96! )? 192!_( 64! )2_( 192! )
2 2 2424 ) 24% | (81)® (241)8

Now we will count the orientations. The cornerséa2%3 orientations. We know that the (1D)

normals have %/3 orientations for each family, making the to@(3)? for both. Each family of (2D)

normals has%/2 orientations, giving the total for both familias (2%2)?. We discovered that the (2D)
wings have no orientations. Finally, the (3D) pie@lso have no orientations. Multiplying the
permutation counts above with the ones for oriémtat we find the total number of configurations of

the & cube to be:

15! (64117 ( 96! \* 192! ( 64! \?( 1921 \* 1215.(364)2.(296)2_

2 ( 2 ) (2&4) 24%® ((8”8) ((24n8) 3 3 2
2643432397631320778500134553673958820699207649851665896425604772617395476791807
5449120687833674754973446543900397769351468280P08739947496200882251028332070620
9136126397333919721917512187798111620665184182825485710066286540019140424063030
1429360363214996466712438873660801491292308642852360727310608535010878238067105
1963271523544294328364145248427890776457184978688684777042842106208814023889636
2236296493402584602040115732610466094292728150882651517606111386336255702904031
7614689746950358557206743419430752323016151867802627636656662880847271909266695
1780665515736532736561912782744002646291923277389896840244595372493068160933347
4034605162499195128015278995981839850617191981866846845219262981268014709340065

0536820032857040975954917719537114553138767596988956828660454277446783240905233
4187639990066505476689708752370694768015380629836797136381033961945031366394941

2




7257082487363905519971803171573792150392276707188285466911957373591754065087207
3140001038916888293574927709289074389258069122483824237313989962030484325621500
2688138830168080534895555772416000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000.

9. The 7 Cube

The 7 Cube will be simpler than the preceding sectiassjo new deductions will be needed to find the
number of configurations. Here are its piece-cimgnthart and diagram:

(OD) pieces - 16

(1D) centers - 32 (32 = (12)/3)

(1D) normals - 64, 64 (64 = {22-8)/3)
(2D) centers - 24 (24 = (8)/2)

(2D) normals - 96, 96, 96, 96 (96 ={48)/2)
(2D) wings - 192 (192 = (8-8)/2)
(3D)(0D) pieces - 64, 64 (64 =8
(3D)(1D) centers - 96, 96 (96 =B)
(3D)(1D) normals - 192 (192 =22-8)
(3D)(2D) centers - 48, 48 (48 =8
(3D)(2D) normals - 192, 192 (192 =48)

1 1 (1
2 2 30(3131
2 32132 30031
2 3 32

As can be seen, all piece types are representadinube except for (3D)(2D) wings. We will bedin
counting the permutations.

There are 16!/2 corner permutations. We remenrben previous sections that on an odd cube, the
number of permutations of the (1D) and (2D) cenitef@4!+32!")/2. There are two families of (1D)

normals, making the count for both (642 he (2D) normals come in four families, resugtin
(96!/(24%)* permutations. There is one family of (2D) wings,in the last section, and the count is
once again 192!/(2%. Counting the permutations of the (3D) piecestisightforward, as long as we
make sure to count the number of families in egipk bf piece properly. There are (64139
permutations of the (3D)(0D) pieces, (96!/((#pHpermutations of the (3D)(1D) centers, 192!/((34!)
permutations of the (3D)(1D) normals, (48!/(8)H permutations of the (3D)(2D) centers, and



(192!1/((241))? permutations of the (3D)(2D) normals. We obtéi@ total number of permutations by
multiplying all of these counts together:

16! 241-32! ( 64! )2( 96! j4' 192!_( 64! jz( 96! jz( 48! jz( 192! j
2 2 2 2424 | 248 | (81)8 (1218 (61)8 (2418
We will now count the number of orientations. Tueners have 18/3 orientations, as always on odd
cubes. We recall from before that there a@fé26orientations of the (1D) centers. For the (hB)mals,

we count (8%3)? orientations, remembering to count once for eadfilf. There are?/2 orientations

of the (2D) centers, as before. Finally, we h&/&2)* orientations of the (2D) normals; there are no
orientations for any of the remaining families. INplying everything together, we obtain the numbér

configurations of the*tube:

3

16!.24!~32!_(64!j2. 96! \* 1921 ( 64! > 96! \*( 48! \*( 192! \*
2 2 2 (242“j 24%® ((8!)8j ((12!)8j ((G!f‘j ((24!)8j
1016 32 [ 364 2 524 ( 596 4
2 .2.(3).2.(2)_

733743431989203499653969654101590141517645746089@3@2558145764019036511682339053
046802371562652660442960696980561660162897005183P883491373316524207715498428153
0898689210269679941460759042817683844933089851888686479450986334974197030255160
2027225039347843681705446657258545461739566813988638159042053262508329517666310
1780841177664939331096229452451761341509712179B882Y4663523220620725714521754301
8207256806903111979941166140911102180432245784838491890473938459448319762318337
6642997335334478805426209502639545897480783647829969688291726407353272805727692
9238687121003677882434826433768137084883560942881398841113769565782775558122047
5341892350700315863584019320116799474271941770649439192489364793276911138702316
4496140365705162073522805447981437237060797325833363224532429457109482886115394
81466424210674949185602805842635839749332626603838923091614729413155005749797571
3597841005820756860142542552272136473538143935926916994430276229498052371986224
6174774873985636528613875824567333274247166660686338064106148971295020871194488
0176558443555260816530945232318977598718253880238281095005716852714319343434690
2155597905349847003282215417962790632702486685468840862906873626153945483927658
821257201550955756583206864440214742450719080688@849496629020896736673985073830
5982026207363516060988262550558510071563675994402095955425254654973644440441852
8297665812213337994772824176931199518923651112819288889233138780723461052256343
2772967036846700100926382558858400930752481663448324031222291602005573986495784
2450041652916128937513204716260395278790457482635739118512596870138536907514962
29317014341048862922212662389623420584114513816228@1344885275316474038318367057
373475691723100401968708263166415392143434443 797588453 7600000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000



10. The & Cube

By this point, it should be evident that for eagpet of piece, we only need to calculate the nurober
permutations and orientations for a family oncéede counts will hold for all larger cubes, andnal
need to do is find the number of families for atigafar cube. When we find the general formula, we
will use our previously calculated permutation anéntation counts for each type of piece; the main
work will be finding the number of families for datype on an arbitrarily sized cube. Then, to ¢oun
the number of permutations and orientations fohdgge of piece, we apply our term which counts the
number of families for that type as an exponerth&permutation and orientation counts for thaetyp

Here are the piece-counting chart and diagramuotast cube:

(OD) pieces - 16

(1D) normals - 64, 64, 64 (64 =-([2-8)/3)

(2D) normals - 96, 96, 96 (96 =-@48)/2)

(2D) wings - 192, 192, 192 (192 =-@8)/2)
(3D)(0D) pieces - 64, 64, 64 (64 =8
(3D)(1D) normals - 192, 192, 192 (192 s12-8)
(3D)(2D) normals - 192, 192, 192 (192 648)
(3D)(2D) wings - 192, 192 (192 =@}8)

0 111
2 2 30) 3131
2 32|32)32
2 32
a0 351
32 30




The only additional explanation required in thistge deals with the (3D)(2D) wings, the one tyje o
piece that remains unexamined. We must show hixptece can never occupy its neighbor's position,
and thus has the same permutation count as thé2@BPhormals, namely 192!/((2#)) To start, notice
that as a (3D) piece, a face rotation can only nao{&D)(2D) wing 3-dimensionally, since it lies the
face itself. Such a rotation cannot bring it torieighbor's position. The last possibility to sider is

that of a slice move. To show that a slice movenoabring a (3D)(2D) wing to its neighbor's pasiti

it will be easier just to show that it can nevermdo that position, by means of our imaginaryksis
argument. Imagine three additional stickers: Grledated adjacent to the (3D)(2D) normal nearest t
the center of the (3D)(2D) region, one is locatdgeent to its neighbor, and one is located adfatcen
the (3D)(1D) normal in the third layer. Clearly slice rotation can reposition these three stxkar

any particular piece. Also, the real sticker nmeshain in place, on the face of the cube. Theegfitre
piece is completely fixed in place for each positiocan occupy. In order to occupy its neighbor's
position, the parity of the faces of the piece widuhve to change. Since it cannot, the piece must
remain in its original position when in that pairmpieces. These arguments also hold for the (ID)(2
wings in cubes of any size, as we can place thitiawlal stickers on the corresponding faces of(8i2)
(2D) wing. These faces can never be confuseddoi ether because they are always different dissanc
from the edge of the cube.

Now we can count the number of permutations oflasircube. There are 15!/2 permutations of the
corner pieces, (64!/2permutations of the (1D) normals, (96!A9% permutations of the (2D) normals,
(1921/(24%))2 permutations of the (2D) wings, (64!/((®)§ permutations of the (3D)(0D) pieces,
(192!/((24!$))2 permutations of the (3D)(1D) normals, (192!/((8Hpermutations of the (3D)(2D)
normals, and (192!/((24))? permutations of the (3D)(2D) wings. Multiplyinketse gives

_;51.(5gg_)? 96! \° (192113 641 \® 192! \’
2\ 2 (2424) (24“8j(<8!>8) ((2408]

as the number of permutations for tHe8be.

Now we will count orientations. There are"¥2 orientations of the corner piece£43)® orientations
of the (1D) normals, and S(@2)3 orientations of the (2D) normals. Multiplying thermutation and
orientation counts together, we obtain the numbbepnfigurations of the’&cube to be:

15! (64!1\% (961 \® 1921\ ( 64! 3 1921 \7 1215_(364)3_(296)3_

2 (2 ) (2424) (244‘*) ((8!>8j ((2408] 3 3 2
4515047282974184492907566879672990236570536312785071397830996237148097075624584
6234096537982372322616530195956647145074456250828529892486222315026053777308445
4845297155272655046044113382851451203758957765598520589003659982843927313750575
0485445929099109155753654453879073591081165678123946737527754619387729556153571
2295929282469299957146303970388930456885725610682848902207457403015699455788198
7823822806547209120583502844382587108317268098872380816023842128622671768133093
6196582476799802940207273030119790665543909939178880632249921696273618789071223
6503256951669387535109798010129927373554333948343021695428663950403968646248466
1545286908450610789504355625533936944501631387895262763287652165890396163515335
8406274942846764972464716561834013772652482776921086118469524709716902626017818
5545277186715437550827239353757222466515499176234251600713639755221370209061423

6687046909689401703643464613287104439791401858863384012640989976787696903219989
45249545389343666546527898077049015071733606612@8521651097667352231645631896109




9529879112066146990047152858353793404566327280669831406019943538833063370285603
61602037941498637406068839089295204249823710728485692453588585458536588024010131
2928665999975626229139429752133484395795784166438232356403707541718110400255267
0619516614051926349812063428933165938464624014930383199357126729859678349805529
88676934546077561783834327835321662514478407166880924384325029553329513793185147
1488559062219509981702672914755002773296086833328291290824956930911758156640655
7055413643730931930955751330204178473044911025634286498638790009594516697743827
7406393759997513033428713322142279455467576055269363873857720055308129788279353
1069271672960553093820184590413962042111930542868928654998300105761177522636420
5237161648111159092672156765232490925727401086484836418482132670980271085479341
8689612063857722889537287320743803588835919525083028769606360682730384011435609
5452054943622481428737827123771926112038536500829%03495500979700023338656129453
16248566535963554036864584272517633266644457555189688328660554942049301641540024
2218191404352818588301245009227475535171356731885144987136027464627734946649911
4384188969998016227661131936163441666657222110462164914810202389221454307480373
1445301762432384723117778862266452825311156660948830791851545283773968906877609
5316447484959101464787760743530152827467720724868936353099714387027464622321369
35780482624804383405214047974986302523872532572085698009102220809003559614117027
1877908795588201524857253938793249744355328000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000.

11. The Generalization

After examining all of the previous cubes and tipé#ce types, we are ready to generalize our fgslin
to a cube of any size. The procedure we will utlebe to examine each type of piece one at a time.
For each piece type, we will list our previouslyided number of permutations and orientations for a
family of that piece. Then, we will deduce the memof families for that type of piece on ghcabe.
This expression will be applied as an exponenutocalculation for the permutation and orientation
counts for a single family, which results the numdieconfigurations of all pieces of that type ooube
of any size. When we multiply these terms for eigple of piece together, we will obtain(@), the

number of configurations of an nxnxnxn Rubik's Cul#ée will begin with the corners, (1D) centers,
and (2D) centers.

Step 1: The (0OD) pieces, (1D) centers, and (2D)ecsn

We will start with the corners. We already know tiumber of configurations of the corners for an

arbitrarily sized cube: For an even cube, it ig9/@)612:%/3), and for an odd cube it is (16!/2){#3).
We will rewrite these two calculations as a sirtglen using the modulo operation: (n mod 2) is Onvhe
nis even, and 1 when n is odd. Therefore, wesearthat

151121

16-12 nmod 2
6 )

correctly counts the number of configurations &f torners for an*rcube.



Now we will consider (1D) and (2D) centers. These occur on an odd cube, so we will once again
use the (n mod 2) term as an exponent. Clearlygyehave one family each of (1D) and (2D) centers
for a cube of any size. The number of permutatairise (1D) and (2D) centers together is (321)/2.

Also, the number of orientations of the (1D) cemisr6%/2, and the number of orientations of the (2D)

centers is /2, or 2°. Combining these and simplifying, we obtain thenber of configurations of the
(1D) and (2D) centers:

(24 1.32 !.221_ 632) nmod 2

Note that this equals one when n is even, andwlilbe cancelled out when multiplied by the other
terms in our formula. We will now combine the tteoms together. We can rewrite-18 from the

corner calculation as°®, and multiply this by our (1D) and (2D) centeunbto obtain

15112
6

nmod 2

(241-321.2%5.6%3)

as the number of configurations of the corners)) @dhters, and (2D) centers.

Step 2: The (1D) normals

Next we will consider the (1D) normals. We knowrfr before that the number of permutations and
orientations of a family of (1D) normals is (644#° and that this number holds for a cube of any. size
We now need to count the number of families of (hB)mals on an‘cube.

(1D) normals only exist on cubes of sifeasd larger. Visualizing a (1D) region, we see #ach piece
other than the center on an odd cube is a (1D) alorfurthermore, each pair of (1D) normals
equidistant from the center belong to one famin an A cube, a (1D) region is an (n - 2)x1 array of
pieces. Therefore, on an even cube, the numidanuolies of (1D) normals is (n - 2)/2, and on amod
cube itis (n - 3)/2. We can write these two cewad one expression using the floor function, wigch
equal to the largest integer less than or equidemumber it is affecting. Using the floor furoetj we
can write the number of families of (1D) normalsamif cube ag(n—2)/2|. This results in our
calculation for the number of configurations of {&®) normals to be:

641 3
(2 3)

Note that this term equals 1 when n equals 2 wh#h correctly counts no (1D) normals when
multiplied by the other terms in the formula.

n—2
2

Step 3: The (2D) normals

Now for the (2D) normals. We have previously ceahnthe number of permutations and orientations of

a family of these pieces to be (96!/423-2%°. We will now count the number of families of (2D)
normals on a cube of any size.

The (2D) normals lie within an (n - 2)x(n - 2) (2@)gion on an‘hcube with > 4. On an even cube,
they lie on the diagonals. On an odd cube, theepdith on the diagonals and what we will call the



straights - (2D) normals or (3D)(2D) normals thiag aot diagonals. We can see that the number of
families of diagonal pieces in an even cube is bialthe number of layers of the (2D) region, asdhe
one family of (2D) normals for each layer above¢hater. This gives (n - 2)/2 as the number of
families of the (2D) normals on an even cube. @odd cube, the number of families of the diagonals
will be (n - 3)/2, because we must not count theerelayer of the (2D) region. We can see that the
number of families of straights will also be (n)/23 by the same reasoning. We can write the nummibe
families of the diagonals in either an even or odde ag(n — 2) /2|, and then use the (n mod 2) term
to add an additional (n - 3)/2 if n is odd. Dothgs, we obtain

n-2 + (nmod 2) n-3
(%.2%)\ [+ omos (757

as the number of configurations of (2D) normal&isTerm equals 1 when nis 2 or 3, as desired.

Step 4: The (2D) wings

We will now study the (2D) wings. We recall thaéthumber of permutations and orientations of a
family of (2D) wings is 192!/(2#). Now we will count the number of families.

There are no (2D) wings when n < 6 on &rube. Let us take a look at some diagrams, wdtigiay

one quadrant of an (n - 2)x(n - 2) region, inclgdihe center layer for odd cubes, starting withé =

We only need to look at a quadrant because eaatraptacontains the same pieces and families, and we
only need to count one piece per family. Heretlaeediagrams, with the pieces representing eaciyfam
of (2D) wings marked with an x:
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When n is equal to 6 or 7, we have one family, whénequal to 8 or 9, we add two to one to getehr
families, and when n is equal to 10 or 11 we adeetio three to get six families. It should beaclbhat
this pattern continues; we have encountered trianguwmbers, defined by the sequence 1,1 + 2 = 3,
1+2+3=6,1+2+3+4=10, etc. Itis kmothat the formula for the mth triangular number is
m(m + 1)/2, all we must do now is correctly représa as an expression in n to obtain the number of
families. Here is a table that identifies the eotivalue of m for each value of n, fok2 < 13:
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We can see that the formula for m is mi(n-4) /2Jwhen n> 4. For the moment we do not need to
worry that this does not hold when n is 2 or 3ugging this value of m into the triangular number
formula, we obtain the number of families of (2Dhgs to bel(n-4) /2] (|((n—4)/2]+ 1) /2, which
equals|(n —4)/2||(n—2)/2]/2. Note that this formula is correct for n equea® or 3. Therefore, the
number of configurations of the (2D) wings is:

i e
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Step 5: The (3D)(0D) pieces

2

To begin with the (3D)(0D) pieces, we remember thatnumber of permutations of a family is
641/((8"°). They lie within an (n - 2)x(n - 2)x(n - 2) (3B9gion, and we see that there is one family for
each layer in the region above the center. Thisasithe number of families (n - 2)/2 for even cubes
and (n - 3)/2 for odd cubes, which we can writeggally as|(n —2)/2|. This results in

oar |7
((8!)8)

as the number of configurations of the (3D)(0ODxp&

Step 6: The (3D)(1D) centers

The (3D)(1D) centers have 96!/((13!permutations for each family. They only existazfd cubes, in
an (n - 2)x(n - 2)x(n - 2) (3D) region. As withetBD)(0D) pieces, each layer above the center laye
contains one family, making the number of families 3)/2. Applying the modulo operation, we find
the number of configurations of the (3D)(1D) cester be:

96!
( (12!)8)

Step 7: The (3D)(2D) centers

(nmodZ)(n—;?’)

The (3D)(2D) centers have 48!/((®!permutations per family. The number of familieédentical to to
the (3D)(1D) centers; they come on odd cubes vathdayer of the (n - 2)x(n - 2)x(n - 2) region a®o
the center layer having one family. Therefore,tbimber of configurations of the (3D)(2D) centess i

(nmodZ)[n;s)

48! 2
( (6!)8)




Step 8: The (3D)(1D) normals, (3D)(2D) normals, &Bid)(2D) wings

Each family of the (3D)(1D) normals, (3D)(2D) norsyaand (3D)(2D) wings contains the same number

of permutations and orientations, namely 192!/(&4!Therefore, we can count the number of families
of each of them, and add these to obtain the motaiber of families. Let us begin with the (3D)(1D)
normals.

(3D)(1D) normals only exist on cubes where &, and occur in a series of (3D)(1D) regions. frer6,
we have a 4x4x4 (3D) region. That region contaims 2x1 (3D)(1D) region, which contains one
family of (3D)(1D) normals. When n = 7, we hav@xl (3D)(1D) region with one family of (3D)(1D)
normals, remembering not to count the center pi&hen n = 8, we have a 4x1 (3D)(1D) region with
two families, but also a 2x1 (3D)(1D) region withive (3D) region that contains one family: 1 + 2.=
When n =9, we have a 5x1 (3D)(1D) region that amsttwo families, and a 3x1 (3D)(1D) region
beneath it that contains one family: 1 + 2 = 3. &WVh = 10, we have a 6x1 region with three famikes
4x1 region with two families, and a 2x1 region wathe family, 1 + 2 + 3 = 6. We are clearly dealing
with the triangular numbers again, and in fact wiith same counts as the (2D) wings, as can bebseen
comparing these numbers with the table listed albmvihose pieces. Therefore, by the same reagonin
the count for the number of families|ign —4) /2||(n — 2) / 2]/ 2, making the number of configurations
of the (3D)(1D) normals:

( 192! )
(241)®
Now we will consider the (3D)(2D) normals and (3ZD)) wings. Observe that we can simplify things

by counting both at once, since they each havedhee permutation and orientation counts, and occur
on the same set of (3D)(2D) regions.

n—4
2

n—2
2

Similarly to the (3D)(1D) normals and their asst®ibregions, we must consider nested series of
(3D)(2D) regions. Here we will display a seried@igrams of these regions, starting withn=6e T
regions will be shown in full, as a series: Fithg outermost (n - 4)x(n - 4) (3D)(2D) region, tolled
by the (n - 6)x(n - 6) region beneath it, and amuntig until we end with a 2x2 or 3x3 region. Hare
the diagrams, with the (3D)(2D) normals and wirgggresenting their family being marked with an x:

n==6:
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We will have to consider the cases of odd and eubes separately. First, odd cubes.

We can identify a pattern; it is a sum of sumsafsecutive even numbers. Here we list the pattern
7<n<15:

D2
:2+(2+4)=8

1. 2+(2+4)+(2+4+6)=20

=13: 2+(2+4)+(2+4+6)+(2+4+6)1840

n=15: 2+(2+4)+(2+4+6)+(2+4+6H82+4+6+8+10)=70

7
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n
n
n
n

The numbers continue: 112, 168, 240, ...
It would be difficult to derive a closed form fdri$ sequence by hand. Fortunately, there is a very

useful website known as The On-Line Encyclopedimtefger SequencésEntering our sequence into
the website we obtain one result, a sequence tatliallowing formula:

m
2(3)
where( r;) Is a binomial coefficient, equal to m(m - 1)(m)/&2

This formula needs to be modified, as it produbessequence 2, 8, 20, 40, 70, ... for m equal to
3,4,5,6,7, ... respectively. Here is a talsignlg corresponding values of m and n for @< 15:

553555
IR TR TIRTINT
PR O N
33
non
TR TR TP
~ o Ul

333

We can see that m = (n - 1)/2, therefore our foenlndcomes

{3

which is equivalent to 2((n - 1)/2)((n - 3)/2)((5)/2)/6, which equals:

(n—5)(n=3)(n—1)
24

Although this formula appears correct as the oatyugnce listed in The Encyclopedia, to be complete
we must prove it is correct. To do this we wilewsslightly modified proof by induction. We wiitst
prove it correct for n = 7, then show that corresgifor n = k implies correctness for n = k + 2.

The formula is correct for n = 7; (7 - 5)(7 - 3}(I)/24 = 2, which is the first term in our sequenc
above.

Now we assume that it holds for n = k, that is,



(k=5) (k= 3)(k—=1)
24

=24+ (24+4) +(2+4+6)+ ... +(2+4+ ...+ (k=5))

Assuming this, we write an expression forn =k + 2
2+ (2+4)+(2+4+6)+ ..+ (2+4+ ..+ (k—23))
We must show that this is equal to

((k+2) =5 ((k+2) —3)((k+2)—1) _ (k—=3)(k—1)(k+1)

24 24

Using our equation above, we rewrite our exprestion = k + 2 as:

(k=5)(k=3)(k—=1)
24

+(2+4+ ...+ (k—=3))

The latter term is equal to 2(1 + 2 + ... + (k/23)which equals 2((k - 3)/2)((k - 3)/2 + 1)/2, the
triangular numbers formula, which in turn simpl#ie (k - 3)(k - 1)/4. Substituting this into our
expression gives:

(k=5)(k=3)(k—=1) , (k=3)(k—=1)
24 4

which equals

(k=5)(k—3)(k—=1) +6(k—3)(k—1)
24

This simplifies to

(k—3)(k—1)(k—54+6) _ (k—3)(k—1)(k+1)

24 24

and thus we have proven our formula correct.

Therefore, we have shown that for odd n, the nurobeonfigurations of the (3D)(2D) normals and
wings is

192!
( (24!)8)

which can be written for all n as:

192!
( (24!>8)

This expression is correct for n < 7, so it doesme®d to be modified.

(n—5(n—=3)(n—1)
24

(nmod 2)(n—5)(n—3)(n—1)
24




Now we will examine the (3D)(2D) normals and wirigseven n.

We have a similar pattern, a sum of sums of coris&cadd numbers. Here is the pattern for
6<n<14:

01
:1+(1+3)=5

0: 1+(1+3)+(1+3+5) =14

=12: 1+(1+3)+(1+3+5)+(1+3+5y=30

n=14: 1+(1+3)+(1+3+5)+(1+3+5H/(1+3+5+7+9)=55
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n
n
n
n

which continues 91, 140, 204, ...
The formula for this sequence according to The Elopedia is:
m(m + 1)(2m + 1)/6

which produces the values above for m equal tq 3, 2, 5, etc. Here we have a table for corregdjmon
values of mand n,6§n<14:
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We observe that m = (n - 4)/2, this makes our fdanf(n - 4)/2)((n - 4)/2 + 1)(n - 4 + 1)/6, which
equals:

(n—4)(n—3)(n—2)
24

Now we must prove that this formula is correctnggine same method of proof by induction as before.
We first show it is correct for n = 6, then probhat correctness for n = k implies correctness for
n=Kk+2.

The formula is correct for n = 6, as (6 - 4)(6 (63) 2)/24 = 1. We now assume that our formulal&ol
forn =k:

(k—=4)(k—3)(k—=2)
24

=1+(1+3)+(1+3+5 +..+(1+3+ ..+ (k=5))

Here we have an expression for n = k + 2:
1+(1+3)+(1+3+5)+...+(1+3+ ...+ (k—3))
We must prove that this is equivalent to

((k+2)—4)((k+2) —3)((k+2)—2) _ (k—=2)(k—1)k

24 24

Using our assumption, we can rewrite the expredsion = k + 2 as:



(k—=4)(k=3)(k—=2)
24

+(1+3+...+(k—=3))

It is known that that sum of the first p odd natumambers is equal t&’p Since there are
((k-3) +1)/2 = (k - 2)/2 odd numbers less thargual to k - 3, we can simplify our expression to

(k—4nk—3uk—2)+(k—2f
24 4

This equals

(k—=4)(k—3)(k—2) —|—6(k—2)2 (k—=2)[(k—4)(k—3) +6(k—2)]

24 24

(k—2) (K —7k+12+6k—12)
24

which simplifies to

k—2)(K—=k) _ (k—2)(k—1)k

24 24

as desired.

We have therefore shown that for even n, the nurmbeonfigurations of the (3D)(2D) normals and
wings is

( 192! )
(241)8
This can be written for all n using a combinatidrthee modulo operation and the absolute value

function: | (nmod 2) — 1| equals 1 when n is even, and 0 when n is oddrefére, our calculation
can be written as

(n—4)(n—=3)(n—2)
24

[(nmod2) —1|(n—4)(n—3)(n—2)
192! 24
( (24!)8)

which is correct for n < 6.

We can now combine our three results for the nurab&amilies of the (3D)(1D) normals, (3D)(2D)
normals, and (3D)(2D) wings. We multiply them ttger to obtain:

192!
( (24!>8)

n—4
2

n—2
2 ] (nmod2)(n—5)(n—3)(n—1) + |(hmod2) —1|(n—4)(n—3)(n—2)
2 * 24




as our count of the number of configurations of(®i2)(1D) normals, (3D)(2D) normals, and (3D)(2D)
wings.

Step 9: The Formula

Having found the number of configurations of eagetof piece, our last step is to multiply all béin
together, obtaining fn), the number of configurations of an nxnxnxn RigkCube:

f5 [n;Zj [n_2y+mnmda(£%§)
_ 1501 26 .33yNmod2( 641 _g3 96! o5
Cy(n) = 225 (241:324:27.6) (7-3 ) (F-z )
ln—4“n—2
2 2 n—2 n—3 n—3
(192!) 2 ( 64! )| 2 ( 96! )(andz)( 2 ]( 48! )mmdz)( 2 j
248 (8138 (121)® (618
n—4||n—2

2 2 ]+(nmmﬁﬂn—Sﬂn—Sﬂn—l}+Hnmmﬁ)—l“n—4ﬂn—3un—a
192! 2 24
( (24!)8)

12. Conclusion

It is hoped that the reader has enjoyed this joyraed that they have gained a deeper understandéing
higher-dimensional Rubik's Cubes. Feel free ta sermments, questions, suggestions, and corrections
to this email address:

djs314djs314@yahoo.com

There will be sequels to this paper, the first bfck will derive G(n), the number of configurations of

an P’ Rubik's Cube. 1 would like to once again thanKiktia Green, Don Hatch, and Jay Berkenbilt for
creating Magic Cube 4D, H. J. Kamack, T. R. Keamg| Eric Balandraud for their previous work, and
especially Roice Nelson for his support, assistaacd inspiration.
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