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1. Introduction

C4(n) is a formula for an upper bound of the number of distinguishable configurations of an n×n×n×n 

Rubik's Cube, which will be derived in this paper.  It will be assumed that the reader is familiar with a
4-dimensional Rubik's Cube.  Online, one can find the free computer program Magic Cube 4D, 
developed by Melinda Green, Don Hatch, and Jay Berkenbilt, which is a completely interactive 
representation of a 4-dimensional Rubik's Cube, and which was the inspiration for this paper and much 
of my other work.1  An FAQ page has been provided to help familiarize new users with the necessary 
concepts of higher dimensions and how Rubik's Cubes would function in these spaces.  Additionally, a 
solution guide has been provided by Roice Nelson, who is another pioneer in the research of higher-
dimensional puzzles.  His creations include the free programs MagicCube5D, which was written along 
with Charlie Nevill, and Magic120Cell, which are representations of a 5-dimensional Rubik's Cube and a
puzzle based on the 120-cell, respectively.2,3  I would like to thank Roice in particular for his continual 
support and encouragement, which includes both hosting this paper and my other work on his website, 
and proofreading this paper while it was being developed.  Roice found many oversights and errors, all 
of which have been corrected, and provided simplifications and new ideas.  His creations MagicCube5D 
and Magic120Cell have also inspired me, and my work is focused on these programs as well.  It should 
also be mentioned that my discoveries would not have been possible without the previous investigations 
of H. J. Kamack and T. R. Keane in their paper, "The Rubik Tesseract"; it was used extensively in 
developing sections 3 and 4 of this paper.4  Eric Balandraud's article, "Calculating the Permutations of 
4D Magic Cubes", was also helpful, and greatly assisted me in examining the properties of
4-dimensional Rubik's Cubes.5
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C4 n =
15!�1215

6
24!�32!�226

�633 n mod 2 64!
2

�363

n�2
2 96!

2424 �2
95

n�2
2

� n mod 2
n�3

2

�

192!

2448

n�4
2

 
n�2

2
2 64!

8! 8

n�2
2 96!

12! 8

n mod 2
n�3

2 48!

6! 8

n mod 2
n�3

2

�

192!

24! 8

n�4
2

 
n�2

2
2

�
n mod 2 n�5 n�3 n�1 � n mod 2 �1 n�4 n�3 n�2

24



We will deduce this formula in two stages.  First, we will calculate the specific values of C4(n) for

2 � n � 8.  Then we will generalize our findings and build the formula up term by term.

3. The 24 Cube

A 24 Rubik's Cube consists of 16 corner pieces, each with four stickers (which are also called facelets).  
There is an important note to be made for cubes regarding the number of pieces per edge.  If it is odd (an
odd cube), we can fix the central 1-colored pieces in place and observe how the other pieces permute and
orient around them.  This is valid because the central pieces never move relative to each other, and we 
can therefore fix them in space.  Note also that we never have to consider making a slice move that 
repositions the central pieces because this is equivalent to rotating all of the other parallel layers in the 
opposite direction and reorienting the entire cube.

For cubes with an even number of pieces per edge (an even cube), such as the 24, we will need a way to 
fix the cube in space so that we do not inadvertently count extra configurations due to the fact that the 
entire cube can rotate in 4-space.  This can be accomplished by fixing a corner piece in place, and using 
it as a point of reference in the same manner as the central pieces for an odd cube.

Now, back to the 24 cube.  We count 24 = 16 pieces, all of which are corners with four facelets each.  To 
determine the number of permutations the corner pieces can attain, we examine what takes place when 
we make a 90 degree face rotation.  Observe that we never need to consider other types of rotations 
because any possible face rotation can be represented as a sequence of 90 degree face rotations.  In such 
a rotation, 8 corner pieces change position in the form of two 4-cycles, which is an even permutation.  
Thus the number of ways the corners can be permuted is 16!/2, dividing by two because of the even 
parity.  However, remember that we must fix one corner in place, making the count 15!/2.

To determine the number of ways the corners can be oriented, we restate here the method discovered by 
T. R. Keane and H. J. Kamack, and described in their paper, "The Rubik Tesseract".  This is the only 
section in this paper which makes use of basic group theory concepts.

In their paper, Keane and Kamack first describe that there are 24 permutations of the facelets of a
4-colored piece, comprising the S4 group (The symmetric group on four letters.)  They describe 

orientations using cycle notation of the four facelets, labeled a, b, c, and d.

The 24 different orientations can be broken down into four crosses, (ab)(cd), (ac)(bd), (ad)(bc), and I, the
identity; eight 3-cycles, called twists; six 2-cycles; and six 4-cycles.  However, for corner pieces on a 
cube of any dimension, only even permutations of the facelets can occur, because the odd permutations 
are mirror images. Thus, 2-cycles and 4-cycles cannot occur because they are odd permutations.

Hence, each corner piece can only be oriented in 12 ways.  The even permutations are all possible, and 
form the alternating group A4.  Keane and Kamack continue by observing that the crosses are a normal 

subgroup of the alternating group they call N.  So,

N = {I, (ab)(cd), (ac)(bd), (ad)(bc)}

The cosets of N form the twists, which they call S and Z:



S = {(abc), (adb), (acd), (bdc)}

Z = {(acb), (abd), (adc), (bcd)}

They then note that the sets N, S, and Z form the quotient-group of A4 by N, in which N acts as the 

identity:

A4

N
= N, S, Z

We can then see that the group multiplication table is:

     N    S    Z

N    N    S    Z

S    S    Z    N

Z    Z    N    S

From this table, we can see that this quotient-group is isomorphic to the group of residue classes, mod 3. 
This means that we can assign the number 0 to N, the number 1 to S, and the number -1 to Z, and adding
these numbers mod 3 is the same as taking the products of elements of these subgroups.

If we can now show that the sum of the orientations of the corners (counting 0 for an orientation in N, 
etc.) mod 3 always remains constant, we will be able to determine the final restriction on the number of 
orientations of the corners.  The orientations can be defined by assigning, to each corner, a letter to each 
facelet and each position of each facelet.  Then each orientation can be described by a four-letter string 
(e.g. ABCD) relative to the position it is occupying.

When pieces rotate in a cycle, their facelets undergo n disjoint cycles if they have n facelets.  We can see
that every cycle of four corners boils down to four 4-cycles of facelets.  We must show that in a 4-cycle 
of pieces, the sum of the orientations of the pieces mod 3 does not change.  The simplest way to do this 
is to first prove that this is true for a 2-cycle of pieces.

Consider a 2-cycle of corners:

ABCD    1
ABCD    2

Each row represents a corner piece.  The 2-cycles of facelets are vertical in direction.  For example:

ABCD    1
CDAB    2

This means that facelet A on piece 1 goes where facelet C on piece 2 was, etc. In this example, piece 1 
performed an N-twist. Now notice that since we are dealing with cycles, the facelets of piece 2 must 
return to the original positions of the facelets of piece 1. Therefore, piece 2 also performed an N-twist.  It



can be checked that if piece 1 performs a Z-twist, piece 2 performs an S-twist, and if piece 1 performs an
S-twist, piece 2 performs a Z-twist. Therefore, the sum of the values mod 3 does not change, and equals 
zero.

Now we simply note that a cycle of pieces of any length can always be expressed as a product of
2-cycles, implying that the sum of the orientation values mod 3 equals zero regardless of the length of 
the cycles involved.  It follows that this is true for the corners of the 24 cube as a special case.  Since an 
N-twist is 0, we can have an isolated N-twist without affecting any other pieces. The value S - Z must 
therefore be congruent to zero, mod 3.

This means that the first 15 corner pieces can each be in any of 12 orientations.  If the value of 
orientations up to that point is 0, the remaining value must be an N-twist.  If it is 1, the remaining value 
must be a Z-twist, and if it is -1, the remaining value must be an S-twist.  In each case there are four 
possible orientations left for the last corner piece.  Therefore, the number of orientations the corners can 
achieve is 1216/3.

However, we must fix the orientation of the fixed corner as well, making the complete count of 
configurations of the 24 cube:

15!
2

�
1215

3
=

3357894533384932272635904000.

It should be clear that the arguments presented here apply to the corners of cubes of any size.

4. The 34 Cube

Now we will consider the 34 cube.  We can count that there are 8 immobile centers.  There are also 24
2-colored pieces, because each face contains six pieces and each piece lies in two faces, giving (6�8)/2 = 
24 pieces.  Similarly, there are (12�8)/3 = 32 3-colored pieces and of course 16 corner pieces.

Now we once again observe what happens when we rotate a face 90 degrees.  We get two 4-cycles of the
corner pieces, three 4-cycles of the 3-colored pieces, and one 4-cycle of the 2-colored pieces.  We 
observe that the number of permutations the corners can achieve is once again 16!/2 (we do not need to 
fix a corner piece this time), and it should be clear that the permutation and orientation counts we found 
for the corners in the preceding section will hold for cubes of any size, taking into account the fixed 
corner piece for even cubes.

We also see that the permutations for both the 2-colored and 3-colored pieces are odd, but notice that 
these odd permutations of pieces must occur together, making their combined parity even.  Thus, the 
number of permutations the 2-colored and 3-colored pieces can achieve is (24!�32!)/2.  To get the total 
number of permutations, we multiply these two counts together, obtaining:

24!�32!
2

�
16!
2

We must now examine orientations.  For the 2-colored pieces, it is clear that in a face rotation there are 
an even number of 4-cycles of facelets, implying that the orientations of the first 23 pieces determine the



orientation of the remaining piece.  Therefore, the number of orientations the 2-colored pieces can attain 
is 224/2.

The 3-colored pieces are a bit trickier.  Each of them can have 3! = 6 permutations of its facelets.  We 
can see that in a face rotation, there is an odd permutation of the facelets, so it might appear that there 
are no restrictions on the orientations of the 3-colored pieces.  Note, however, that the odd permutation 
of the facelets occurs along with the odd permutation of the 3-colored pieces themselves, implying that 
the orientations of the first 31 pieces determine the parity of the orientation of the last piece.  This is 
because the parity of the facelets is determined by the parity of the pieces themselves, and thus the parity
of the last piece's orientation is fixed by the parity of the others' orientations, such that their combined 
parity matches the parity of the permutation of the pieces.  Each piece has three odd orientations (three 
2-cycles of two of the facelets) and three even orientations (two 3-cycles and the identity).  This means 
that the last piece can only have three different orientations, giving the total number of orientations of 
the 3-colored pieces as 632/2.

The number of orientations of the corner pieces are the same as they were for the 24 cube, namely 1216/3,
without the restriction of the fixed corner.  Multiplying together the orientation counts for each type of 
piece, along with the permutation count we obtained above, gives
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as the total number of configurations for the 34 cube.

5. A Note on Notation

In order to study cubes larger than the 34, it will be useful to develop a better system for naming the 
pieces under consideration than simply referring to the number of facelets a piece has.  This is because 
on larger cubes, there are often multiple groups of pieces with the same number of facelets.

We shall denote by the term family a complete group of pieces that can occupy the same positions on a 
cube throughout all possible configurations.  For example, on a 54 cube, there are two families of
3-colored pieces and three families of 2-colored pieces.

The notation system that follows is useful in four dimensions, but is even more valuable in dimensions 
five and above.  The basic idea is to classify families of pieces by the dimension of the section they are 
located in.  To make this more explicit, consider the 4-colored corner pieces.  If the Rubik's Cube were 
replaced by an actual tesseract, a corner would be a point, or dimension zero.  So, we will refer to a 
corner piece as a (0D) piece.  3-colored pieces will be called (1D) pieces, 2-colored pieces will be called 
(2D) pieces, and 1-colored pieces will be called (3D) pieces.  This classification of a piece by the 
dimension of the section it resides in will be called the type of that piece.  Also, the term region will refer
to a section that contains connected pieces of a specific type.  For example, on a 54 cube, a (1D) region is
a 3×1 section that holds three (1D) pieces.

So far, this only appears to be a relabeling of the pieces based on their location on the cube, which seems
redundant due to the fact that the number of facelets on a piece is itself determined by the location of 



that piece on the cube.  However, the key idea is this: For (nD) pieces, where n � 3, we continue to break
down the location of the piece until we have n � 2.  For example, consider a 54 cube.  Its (3D) pieces on 
a single face form a 3×3×3 cube.  The pieces on the corners of that cube will be called (3D)(0D) pieces, 
the edges, (3D)(1D) pieces, and the faces, (3D)(2D) pieces, while the term (3D) pieces will continue to 
denote the entire group of pieces. (Note that the term (3D) pieces will often be excluded when referring 
to types of pieces in general, as it represents multiple piece types.)  The center piece will be referred to 
as a (3D) center, the term center always being reserved for a piece that lies at the center of the region it is
located in.  It should also be noted that on n4 cubes, when n � 6, all of the the (3D) pieces other than the 
center are broken down into either (3D)(0D), (3D)(1D), or (3D)(0D) pieces regardless of the depth of 
each piece within the face.  For example, take a 74 cube.  The (3D) pieces in the inner 3×3×3 section will
be broken down in the same manner as if they were the (3D) pieces in the 54 cube in the example above.

There is another observation to be made regarding the concept of regions.  When considering regions for
a type of piece that is subclassified (i.e. (3D)(1D) and (3D)(2D) regions for 4-dimensional cubes), a 
group of pieces of such a type will be broken into separate regions according to the dimension of the 
subclassification.  To make this completely clear, consider a 74 cube.  A single face has one (3D) region, 
which is the complete 5×5×5 section of (3D) pieces on that face, as expected.  Also, that face has twelve 
(3D)(2D) regions: Six of them are 3×3 sections of (3D)(2D) pieces (in the outer layer of the (3D) 
pieces), and the other six are 1×1 sections of (3D)(2D) pieces (in the inner layer of the (3D) pieces).  We
count these regions as separate, so that each region is a 2-dimensional group of pieces, even though each
3×3 region is connected to the piece of the corresponding 1×1 region.  We can also see that there are 
twelve (3D)(1D) regions, six of which are 3×1 sections of (3D)(1D) pieces, and the remaining six 1×1 
sections of (3D)(1D) pieces.  It should now be clear what is meant by a (3D)(2D) and (3D)(1D) center 
on a cube of any size.

This notation system, or one which uses similar concepts, is essential when considering nd cubes when
d � 5.  For example, if d = 6, we can have (5D)(4D)(2D) pieces, (4D)(1D) pieces, or even
(5D)(4D)(3D)(0D) pieces!

There is one more distinction to be made.  We have already defined what we mean by a center piece.  
The rest are either wings or normals.  Wings are pieces that only occur on a (2D) or (3D)(2D) region.  
They are the pieces that do not lie on the main diagonals of the (2D) or (3D)(2D) region or (in the case 
of an odd cube) on the lines that divide the region into four equal square quadrants.  Pieces that are 
neither wings nor centers will be called normals, except for (0D) and (3D)(0D) pieces, which can simply
be referred to as pieces without confusion.

To help with visualizing the pieces, here are diagrams of a 5×5 and 6×6 (2D) (or (3D)(2D)) region, in 
which the normals have been marked with an x:

                                    



Finally, here is a list of all possible types of pieces on a 4-dimensional cube:

(0D) pieces (corners)
(1D) centers
(1D) normals
(2D) centers
(2D) normals
(2D) wings
(3D) centers
(3D)(0D) pieces
(3D)(1D) centers
(3D)(1D) normals
(3D)(2D) centers
(3D)(2D) normals
(3D)(2D) wings
(4D) pieces (pieces inside the cube with no facelets)

This system may seem abstract at first, but it will be necessary to understand it well to follow the rest of 
this paper.

6. The 44 Cube

The 44 cube will introduce some fundamental concepts which will apply to all larger cubes.  We will also
begin to study the families of pieces using the notation introduced in the section above.

The following chart and diagram will be used from this point onward to summarize the piece-counting 
situation:

(0D) pieces - 16
(1D) normals - 64  (64 = (2�12�8)/3)
(2D) normals - 96  (96 = (4�6�8)/2)
(3D)(0D) pieces - 64  (64 = 8�8)

          

Each type of piece is represented by a row in this chart.  To the right of each hyphen, the number of 
pieces in each family contained in that type of piece is displayed. (If there is more than one family for a 
particular type of piece, the number of pieces of each will be listed, separated by a comma.)  For each 
cube chart, calculations will be provided which help explain how the counts were arrived at, presented as
they are in this 44 chart.  The diagram aids in visualizing the families.  It displays each layer of a face of 
the cube from left to right, moving from the outermost layer to the layer nearest the center. (The center 
layer will not be included for odd cubes.)  Each family of pieces will be represented exactly once by 



displaying the type of that piece, written as 0, 1, 2, 30, 31, or 32, on one of the pieces in the family.  
Here we see the outer layer of a face on the left, with its (0D), (1D), and (2D) piece families marked 
appropriately, and the same with the family of (3D)(0D) pieces in the inner layer.  We will begin by 
considering the number of permutations of each family of pieces, starting at the top of the chart.

We first remember that the number of permutations of the (0D) pieces is 15!/2, as always taking the 
fixed corner into account.  Now, consider a 90 degree face rotation.  It should be clear that the 
permutations and orientations of the pieces in each family will be of even parity, and that this is also true
for all even cubes.  This is due to the fact that the permutations of the pieces and their facelets in each 
family will consist entirely of an even number of 4-cycles, by the symmetrical nature of the faces of an 
even cube.  We can also make a 90 degree slice rotation, which we can visualize as a normal face 
rotation in which each type of piece is now located on the corresponding section of the cube of one 
lower dimension.  For the 44 cube, the (3D)(0D) pieces are now located in the (2D) pieces' positions, the 
(2D) pieces are located in the (1D) pieces' positions, and the (1D) pieces are located in the (0D) pieces' 
positions.  The (0D) pieces are never moved by a slice rotation.  Additionally, the pieces in the (3D)(0D)
pieces' locations are now (4D) pieces, which we do not consider in our analysis because they are inside 
the cube and are not visible in 4-space.  We can see that because a slice move has essentially the same 
form of a face rotation, with the only modification that the pieces are now in different positions, the 
permutations of all pieces and their facelets will still be even for all even cubes, and thus we never need 
to consider odd permutations on such cubes.

The (1D) normals come in 32 pairs of identically colored pieces, so it might at first appear that we must 
account for this.  However, it turns out that two pieces of the same appearance can never occupy the 
same position and orientation, and are therefore always distinguishable from each other.  We can see this
by imagining a fourth sticker on each piece in a pair of pieces with the same colors.  The sticker on each 
piece is located on the face of the piece that is adjacent to the other piece (which is hidden from view), 
so that the two extra stickers touch each other.  Notice that this fourth sticker is fixed in place for any 
position a piece can occupy (always being closest to the center of the (1D) region).  Because each piece 
now has four stickers, and the fourth sticker is fixed in place for each possible position, it follows that an
odd permutation of the three real stickers of a piece can never occur for a piece fixed in a certain 
position. This is because if it were to do so, it would become its own 4-dimensional mirror image.

This implies that each piece can only be in three orientations. (We will get back to this more later.)  
Now, observe that two matching (1D) normals have the same appearance when viewed in 4-space (when
in corresponding orientations), and in order for one to occupy its neighbor's position, it would 
necessarily flip, thus its facelets would be of opposite parity than its neighbor's would be in the same 
position.  It follows that two identically colored pieces can never occupy the same position and 
orientation, because if they could, they could be moved to either of the two of their home positions in the
same position and orientation, which we just showed is impossible.  Thus, the 64 pieces are all 
distinguishable from each other, and so the number of permutations they can attain is 64!/2.

Another insight will be required to count the number of permutations of the (2D) normals.  They come in
24 groups of four matching pieces each, and this time these pieces can occupy the same position and 
orientation. We see that we should consider identically colored pieces as identical when counting the 
permutations (so that we never count two positions as separate that differ only in the repositioning of 
matching pieces amongst themselves).  This is because we would be overcounting if we did not do so, 
when multiplying by the number of orientations.  Disregarding parity for now, we can see that the 
number of permutations is 96!/(2424).  This is because if we consider all of the pieces to be different, we 
obtain 96! positions.  Now notice that each group of four matching pieces can be permuted 4! = 24 
different ways amongst themselves, and so there are 24 matching positions for every possible 
permutation.  Therefore, we must divide by 24 for each group of matching pieces, obtaining 96!/(2424) 
different positions.



Now, to consider how parity affects our count, we need have but one simple realization - swapping two 
identical pieces changes the parity, but not the position.  This means that parity constraints have no 
effect when counting the number of permutations of a family with identical pieces.  We can see this by 
observing that we can achieve any of the possible permutations by incorporating a swap of two identical 
pieces when swapping two others.  Therefore, our count above is already correct and does not need to be
modified.

Finally, the (3D)(0D) pieces come in eight groups of eight identical pieces each, giving 64!/((8!)8) as the 
count of these pieces by the reasoning given above.  This makes the total number of permutations:

15!
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8! 8

Now for orientations.  We already know that the orientation count for the corners is 1215/3.  For the (1D)
normals, we will have to make one more important observation.  We already know that there are three 
possible orientations for each piece.  The only thing left to consider is how the orientations of the first 63
affect the orientation of the last one.  We can use an argument similar to Keane and Kamack's reasoning 
above for the orientations of the corners to show that the last piece is fixed by the first 63.  To see this, 
we have as the possible permutations of facelets the alternating group A3.  This time, we have the 

identity, I, the 3-cycle (abc) which we will call an S-twist, and the 3-cycle (acb) which we will call a
Z-twist.  The multiplication table is once again:

     I   S   Z

I    I   S   Z

S    S   Z   I

Z    Z   I   S

This implies that we can count I as 0, S as 1, and Z as -1, and adding these numbers mod 3 is identical to
performing each twist, as before.  The same reasoning as before also shows that the sum of these 
orientation values mod 3 is always zero.  Therefore, the sum of the orientation values of the first 63 (1D)
normals determines the twist of the last, and the count for the number of orientations of the (1D) normals
is 364/3.

The (2D) normals are simple, as we know that the parity of the (2D) normals' facelets is even, thus 
implying that the orientation count is 296/2.  Finally, the (3D)(0D) pieces have no orientation, thus 
making the complete count for the number of configurations of the 44 cube:
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000000000.

It can be seen that the reasoning for the permutations and orientations of the (1D) normals apply to the 
(1D) normals of a cube of any size, with the only change in our imaginary stickers argument being to 
place the imaginary sticker on the face of the (1D) normal that is closest to the center of the (1D) region, 
as the (1D) normals on larger cubes are not always adjacent to the other (1D) normal in their family.  
Also, the reasoning for families with identical pieces clearly holds for any such group.

7. The 54 Cube

Here are the piece-counting chart and diagram for the 54 cube:

(0D) pieces - 16
(1D) centers - 32  (32 = (12�8)/3)
(1D) normals - 64  (64 = (2�12�8)/3)
(2D) centers - 24  (24 = (6�8)/2)
(2D) normals - 96, 96  (96 = (4�6�8)/2)
(3D)(0D) pieces - 64  (64 = 8�8)
(3D)(1D) centers - 96  (96 = 12�8)
(3D)(2D) centers - 48  (48 = 6�8)

          

We can see that the number of types and families of pieces is growing quickly as we increase the size of 
the cube.  We have our 16 (0D) pieces as always.  The (1D) pieces reside in a group of 3×1 (1D) regions,
with the counts given above.  The (2D) pieces are located in a group of 3×3 (2D) regions, in which there 
are two families of (2D) normals, and one of (2D) centers.  Finally, the (3D) pieces are divided into three
separate subtypes: The (3D)(0D) pieces, the (3D)(1D) centers, and the (3D)(2D) centers.  Of course, we 
do not consider the (3D) centers as they are our immovable reference points.

In a 90 degree face rotation, we find odd permutations of the (1D) centers, (2D) centers, (3D)(1D) 
centers, and (3D)(2D) centers, and even permutations for all other families of pieces.  We see that we do 
not need to consider that the (3D)(1D) and (3D)(2D) centers come in odd permutations, because of the 
fact we discovered earlier that parity constraints do not apply to families that contain identical pieces.  
Therefore, we only need to consider odd permutations of the (1D) and (2D) centers.  With a bit of 
thought, it can be seen that this is true for odd cubes of any size, as all of the other families of pieces 
either contain identical pieces, or are (1D) normals, which always come in even permutations.  If we 
now consider the slice moves of an odd cube of any size (realizing that there is more than one slice move
for cubes of size 64 and larger), we see that the only families of pieces that have odd permutations are 
(2D) normals and (3D) pieces.  (2D) normals and (3D) pieces always come in families that contain 



identical pieces, so they do not need to be considered with regards to parity.

Thus, we have proven that on an odd cube of any size, the only families that need to be addressed for 
having odd permutations of their pieces are (1D) and (2D) centers.  All other families either come in 
even permutations, or contain identical pieces and do not need to be considered.

As for orientations, on any odd cube we see that only (1D) centers need to be addressed for having an 
odd permutation of facelets.  This is because we have already found (0D) pieces and (1D) normals to 
come in even orientations, (2D) pieces contain two facelets per piece, and thus come in even 
permutations of facelets, and (3D) pieces have no orientations.  Slice moves never move (1D) centers, 
and hence we have proven that on an odd cube of any size, the family of (1D) centers always has an odd 
permutation of its facelets, and is the only family of pieces that does so.

This analysis of the parity situation of odd cubes of any size, along with our similar study of even cubes 
of any size, will make things much easier in the sections to come.  We will now begin counting the 
permutations of the 54 cube, starting at the top of the chart.

We already know that the corners have 16!/2 permutations.  By following the same reasoning we used 
for the 34 cube, we see that the number of permutations of the (1D) and (2D) centers is (24!�32!)/2.  For 
the (1D) normals we remember, as we mentioned in the previous section on the 44 cube, that the count 
obtained there will apply to the (1D) normals on any cube.  Thus, the number of permutations of the 
(1D) normals is 64!/2.  Each of the two families of (2D) normals come in 24 groups of 4 identical pieces 
each, and so the count for each family is 96!/(2424).  Similarly, the count for the (3D)(0D) pieces is
64!/((8!)8), the count for the (3D)(1D) centers is 96!/((12!)8), and the count for the (3D)(2D) centers is
48!/((6!)8).  Multiplying all of these counts together, we obtain
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as the number of permutations of the 54 cube.

We will now study orientations.  We know that the corners have 1216/3 orientations, as before.  The (1D)
centers have 632/2 orientations, by the same logic that was used in the 34 section.  Additionally, the (1D) 
normals have 364/3 orientations, because the reasoning in the previous section for the (1D) normals on 
the 44 cube applies to all larger cubes.  The (2D) centers have 224/2 orientations, and each family of (2D)
normals has 296/2 orientations, as we proved above they come in even permutations of facelets.  Of 
course, the (3D) pieces have no orientations.  Multiplying all of our counts together, we obtain as the 
number of configurations of the 54 cube:
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8. The 64 Cube

We begin our analysis of the 64 cube with its piece-counting chart and diagram:

(0D) pieces - 16
(1D) normals - 64, 64  (64 = (2�12�8)/3)
(2D) normals - 96, 96  (96 = (4�6�8)/2)
(2D) wings - 192  (192 = (8�6�8)/2)
(3D)(0D) pieces - 64, 64  (64 = 8�8)
(3D)(1D) normals - 192  (192 = 2�12�8)
(3D)(2D) normals - 192  (192 = 4�6�8)

                    

We see that a (1D) region contains two families of (1D) normals, each with 64 pieces.  The diagram and 
calculations above should also make the counts for the (3D) pieces clear, noting that a (3D)(1D) normal 
can be brought to its neighbor's position in its (3D)(1D) region with a minimum of three 90 degree face 
rotations.  It should begin to be apparent that in any type of piece, each family will contain a constant 
number of pieces, regardless of the size of the cube or the number of families that type of piece contains.

In a (2D) region, there are two families of (2D) normals and one of (2D) wings.  It is not immediately 
clear whether there should be one or two families of (2D) wings; at first glance it may not appear that 
such a piece can be moved to occupy its neighbor's position.  In fact, this cannot be done by rotating a 
single face, but it can be accomplished by rotating multiple faces.  The simplest way to do this would be 
to rotate three adjacent faces so that the outer layer that the piece is located in is first removed from its 
face, then brought back to its original position flipped.

It can now be determined that the orientation of each (2D) wing is fixed for each position it can occupy.  
This implies that a (2D) wing and its neighbor can never be in the same position and orientation.  Our 
method will be similar to the method used to establish the analogous result for the (1D) normals.

We imagine attaching a third sticker to the face of an arbitrary (2D) wing that is touching its neighbor 
(this sticker is hidden from view in 4-space), and observe that this sticker is fixed in place for each 
position the piece can occupy, always being next to its neighbor.  Next, we attach a fourth sticker to the 
face of the (2D) wing that is adjacent to the (2D) normal in the innermost layer of the face, and again 
note that this sticker is fixed in place for any position the piece can occupy.  Hence, we can think of each
(2D) wing as a 4-colored piece.



Therefore, because two of the four stickers of a (2D) wing are fixed for any position the piece can 
occupy, the other two must be as well, for otherwise the piece would become its own mirror image, 
which is not possible.  This implies that a (2D) wing and its neighbor can never be in the same position 
and orientation, as for one to occupy its neighbor's position it would necessarily flip, causing its real 
stickers to be of opposite parity than its neighbor's would be in that position.  It can be observed that 
these results for the (2D) wings apply to the (2D) wings of a cube of any size, the only change in the 
arguments being to place the additional stickers on the faces of each piece which correspond to the faces 
with additional stickers on the 64 cube.  These two stickers are always uniquely identified because they 
are always different distances from the edge of the cube.

We are now ready to count the permutations and orientations of each family of pieces in the 64 cube.  
We will start with the permutations, at the top of the chart.

The corners, of course, have 15!/2 permutations.  We know from previous sections that each family of 
(1D) normals has 64!/2 permutations, giving (64!/2)2 as the count for both families.  We also know that 
the (2D) normals have 96!/(2424) permutations for each family, making the total (96!/(2424))2 for both.  
The (2D) wings are a family of 192 pieces, but there are identical pieces in this group.  Because this 
family comes in groups of eight identically colored pieces, and a piece and its neighbor can never be in 
the same position and orientation, it follows that the (2D) wings consist of 48 groups of 4 identical 
pieces each.  Thus, there are 192!/((4!)48) = 192!/(2448) permutations of the (2D) wings.  The (3D) pieces
follow the same rules for families with identical pieces: There are (64!/((8!)8))2 permutations of the
(3D)(0D) pieces, 192!/((24!)8) permutations of the (3D)(1D) normals, and 192!/((24!)8) permutations of 
the (3D)(2D) normals.  Multiplying these permutation counts together, we obtain the number of 
permutations of the 64 cube:
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Now we will count the orientations.  The corners have 1215/3 orientations.  We know that the (1D) 
normals have 364/3 orientations for each family, making the total (364/3)2 for both.  Each family of (2D) 
normals has 296/2 orientations, giving the total for both families as (296/2)2.  We discovered that the (2D) 
wings have no orientations.  Finally, the (3D) pieces also have no orientations.  Multiplying the 
permutation counts above with the ones for orientations, we find the total number of configurations of 
the 64 cube to be:
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9. The 74 Cube

The 74 Cube will be simpler than the preceding sections, as no new deductions will be needed to find the 
number of configurations.  Here are its piece-counting chart and diagram:

(0D) pieces - 16
(1D) centers - 32  (32 = (12�8)/3)
(1D) normals - 64, 64  (64 = (2�12�8)/3)
(2D) centers - 24  (24 = (6�8)/2)
(2D) normals - 96, 96, 96, 96  (96 = (4�6�8)/2)
(2D) wings - 192  (192 = (8�6�8)/2)
(3D)(0D) pieces - 64, 64  (64 = 8�8)
(3D)(1D) centers - 96, 96  (96 = 12�8)
(3D)(1D) normals - 192  (192 = 2�12�8)
(3D)(2D) centers - 48, 48  (48 = 6�8)
(3D)(2D) normals - 192, 192  (192 = 4�6�8)

                    

As can be seen, all piece types are represented in this cube except for (3D)(2D) wings.  We will begin by
counting the permutations.

There are 16!/2 corner permutations.  We remember from previous sections that on an odd cube, the 
number of permutations of the (1D) and (2D) centers is (24!�32!)/2.  There are two families of (1D) 
normals, making the count for both (64!/2)2.  The (2D) normals come in four families, resulting in
(96!/(2424))4 permutations.  There is one family of (2D) wings, as in the last section, and the count is 
once again 192!/(2448).  Counting the permutations of the (3D) pieces is straightforward, as long as we 
make sure to count the number of families in each type of piece properly.  There are (64!/((8!)8))2 
permutations of the (3D)(0D) pieces, (96!/((12!)8))2 permutations of the (3D)(1D) centers, 192!/((24!)8) 
permutations of the (3D)(1D) normals, (48!/((6!)8))2 permutations of the (3D)(2D) centers, and



(192!/((24!)8))2 permutations of the (3D)(2D) normals.  We obtain the total number of permutations by 
multiplying all of these counts together:
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We will now count the number of orientations.  The corners have 1216/3 orientations, as always on odd 
cubes.  We recall from before that there are 632/2 orientations of the (1D) centers.  For the (1D) normals, 
we count (364/3)2 orientations, remembering to count once for each family.  There are 224/2 orientations 
of the (2D) centers, as before.  Finally, we have (296/2)4 orientations of the (2D) normals; there are no 
orientations for any of the remaining families.  Multiplying everything together, we obtain the number of
configurations of the 74 cube:
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10. The 84 Cube

By this point, it should be evident that for each type of piece, we only need to calculate the number of 
permutations and orientations for a family once.  These counts will hold for all larger cubes, and all we 
need to do is find the number of families for a particular cube.  When we find the general formula, we 
will use our previously calculated permutation and orientation counts for each type of piece; the main 
work will be finding the number of families for each type on an arbitrarily sized cube.  Then, to count 
the number of permutations and orientations for each type of piece, we apply our term which counts the 
number of families for that type as an exponent to the permutation and orientation counts for that type.

Here are the piece-counting chart and diagram for our last cube:

(0D) pieces - 16
(1D) normals - 64, 64, 64  (64 = (2�12�8)/3)
(2D) normals - 96, 96, 96  (96 = (4�6�8)/2)
(2D) wings - 192, 192, 192  (192 = (8�6�8)/2)
(3D)(0D) pieces - 64, 64, 64  (64 = 8�8)
(3D)(1D) normals - 192, 192, 192  (192 = 2�12�8)
(3D)(2D) normals - 192, 192, 192  (192 = 4�6�8)
(3D)(2D) wings - 192, 192  (192 = 4�6�8)

          

          



The only additional explanation required in this section deals with the (3D)(2D) wings, the one type of 
piece that remains unexamined.  We must show that this piece can never occupy its neighbor's position, 
and thus has the same permutation count as the (3D)(2D) normals, namely 192!/((24!)8).  To start, notice
that as a (3D) piece, a face rotation can only move a (3D)(2D) wing 3-dimensionally, since it lies on the 
face itself.  Such a rotation cannot bring it to its neighbor's position.  The last possibility to consider is 
that of a slice move.  To show that a slice move cannot bring a (3D)(2D) wing to its neighbor's position, 
it will be easier just to show that it can never move to that position, by means of our imaginary stickers 
argument.  Imagine three additional stickers: One is located adjacent to the (3D)(2D) normal nearest to 
the center of the (3D)(2D) region, one is located adjacent to its neighbor, and one is located adjacent to 
the (3D)(1D) normal in the third layer.  Clearly, no slice rotation can reposition these three stickers for 
any particular piece.  Also, the real sticker must remain in place, on the face of the cube.  Therefore, the 
piece is completely fixed in place for each position it can occupy.  In order to occupy its neighbor's 
position, the parity of the faces of the piece would have to change.  Since it cannot, the piece must 
remain in its original position when in that pair of pieces.  These arguments also hold for the (3D)(2D) 
wings in cubes of any size, as we can place the additional stickers on the corresponding faces of the (3D)
(2D) wing.  These faces can never be confused for each other because they are always different distances
from the edge of the cube.

Now we can count the number of permutations of our last cube.  There are 15!/2 permutations of the 
corner pieces, (64!/2)3 permutations of the (1D) normals, (96!/(2424))3 permutations of the (2D) normals, 
(192!/(2448))3 permutations of the (2D) wings, (64!/((8!)8))3 permutations of the (3D)(0D) pieces,
(192!/((24!)8))3 permutations of the (3D)(1D) normals, (192!/((24!)8))3 permutations of the (3D)(2D) 
normals, and (192!/((24!)8))2 permutations of the (3D)(2D) wings.  Multiplying these gives

15!
2

�
64!
2

3

�
96!

2424

3

�
192!

2448

3 64!

8! 8

3

�
192!

24! 8

7

as the number of permutations for the 84 cube.

Now we will count orientations.  There are 1215/3 orientations of the corner pieces, (364/3)3 orientations 
of the (1D) normals, and (296/2)3 orientations of the (2D) normals.  Multiplying the permutation and 
orientation counts together, we obtain the number of configurations of the 84 cube to be:
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11. The Generalization

After examining all of the previous cubes and their piece types, we are ready to generalize our findings 
to a cube of any size.  The procedure we will use will be to examine each type of piece one at a time.  
For each piece type, we will list our previously derived number of permutations and orientations for a 
family of that piece.  Then, we will deduce the number of families for that type of piece on an n4 cube.  
This expression will be applied as an exponent to our calculation for the permutation and orientation 
counts for a single family, which results the number of configurations of all pieces of that type on a cube
of any size.  When we multiply these terms for each type of piece together, we will obtain C4(n), the 

number of configurations of an n×n×n×n Rubik's Cube.  We will begin with the corners, (1D) centers, 
and (2D) centers.

Step 1: The (0D) pieces, (1D) centers, and (2D) centers

We will start with the corners.  We already know the number of configurations of the corners for an 
arbitrarily sized cube: For an even cube, it is (15!/2)(1215/3), and for an odd cube it is (16!/2)(1216/3).  
We will rewrite these two calculations as a single term using the modulo operation: (n mod 2) is 0 when 
n is even, and 1 when n is odd.  Therefore, we can see that

15!�1215

6
16�12 n mod 2

correctly counts the number of configurations of the corners for an n4 cube.



Now we will consider (1D) and (2D) centers.  These only occur on an odd cube, so we will once again 
use the (n mod 2) term as an exponent.  Clearly, we only have one family each of (1D) and (2D) centers 
for a cube of any size.  The number of permutations of the (1D) and (2D) centers together is (24!�32!)/2. 
Also, the number of orientations of the (1D) centers is 632/2, and the number of orientations of the (2D) 
centers is 224/2, or 223.  Combining these and simplifying, we obtain the number of configurations of the 
(1D) and (2D) centers:

24!�32!�221
�632 n mod 2

Note that this equals one when n is even, and thus will be cancelled out when multiplied by the other 
terms in our formula.  We will now combine the two terms together.  We can rewrite 16�12 from the 
corner calculation as 25�6, and multiply this by our (1D) and (2D) center count to obtain

15!�1215

6
24!�32!�226

�633 n mod 2

as the number of configurations of the corners, (1D) centers, and (2D) centers.

Step 2: The (1D) normals

Next we will consider the (1D) normals.  We know from before that the number of permutations and 
orientations of a family of (1D) normals is (64!/2)�363, and that this number holds for a cube of any size. 
We now need to count the number of families of (1D) normals on an n4 cube.

(1D) normals only exist on cubes of size 44 and larger.  Visualizing a (1D) region, we see that each piece
other than the center on an odd cube is a (1D) normal.  Furthermore, each pair of (1D) normals 
equidistant from the center belong to one family.  On an n4 cube, a (1D) region is an (n - 2)×1 array of 
pieces.  Therefore, on an even cube, the number of families of (1D) normals is (n - 2)/2, and on an odd 
cube it is (n - 3)/2.  We can write these two counts as one expression using the floor function, which is 
equal to the largest integer less than or equal to the number it is affecting.  Using the floor function, we 
can write the number of families of (1D) normals on an n4 cube as  n�2 / 2 .  This results in our 
calculation for the number of configurations of the (1D) normals to be:

64!
2

�363

n�2
2

Note that this term equals 1 when n equals 2 or 3, which correctly counts no (1D) normals when 
multiplied by the other terms in the formula.

Step 3: The (2D) normals

Now for the (2D) normals.  We have previously counted the number of permutations and orientations of 
a family of these pieces to be (96!/(2424))�295.  We will now count the number of families of (2D) 
normals on a cube of any size.

The (2D) normals lie within an (n - 2)×(n - 2) (2D) region on an n4 cube with n � 4.  On an even cube, 
they lie on the diagonals.  On an odd cube, they lie both on the diagonals and what we will call the 



straights - (2D) normals or (3D)(2D) normals that are not diagonals.  We can see that the number of 
families of diagonal pieces in an even cube is half of the number of layers of the (2D) region, as there is 
one family of (2D) normals for each layer above the center.  This gives (n - 2)/2 as the number of 
families of the (2D) normals on an even cube.  On an odd cube, the number of families of the diagonals 
will be (n - 3)/2, because we must not count the center layer of the (2D) region.  We can see that the 
number of families of straights will also be (n - 3)/2, by the same reasoning.  We can write the number of
families of the diagonals in either an even or odd cube as  n�2 / 2 , and then use the (n mod 2) term 
to add an additional (n - 3)/2 if n is odd.  Doing this, we obtain

96!

2424
�295

n�2
2

� n mod 2
n�3

2

as the number of configurations of (2D) normals.  This term equals 1 when n is 2 or 3, as desired.

Step 4: The (2D) wings

We will now study the (2D) wings.  We recall that the number of permutations and orientations of a 
family of (2D) wings is 192!/(2448).  Now we will count the number of families.

There are no (2D) wings when n < 6 on an n4 cube.  Let us take a look at some diagrams, which display 
one quadrant of an (n - 2)×(n - 2) region, including the center layer for odd cubes, starting with n = 6.  
We only need to look at a quadrant because each quadrant contains the same pieces and families, and we
only need to count one piece per family.  Here are the diagrams, with the pieces representing each family
of (2D) wings marked with an x:

n = 6:

n = 7:

n = 8:



n = 9:

n = 10:

n = 11:

When n is equal to 6 or 7, we have one family, when n is equal to 8 or 9, we add two to one to get three 
families, and when n is equal to 10 or 11 we add three to three to get six families.  It should be clear that 
this pattern continues; we have encountered triangular numbers, defined by the sequence 1, 1 + 2 = 3,
1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 10, etc.  It is known that the formula for the mth triangular number is
m(m + 1)/2, all we must do now is correctly represent m as an expression in n to obtain the number of 
families.  Here is a table that identifies the correct value of m for each value of n, for 2 � n � 13:

n = 2:  m = 0
n = 3:  m = 0
n = 4:  m = 0
n = 5:  m = 0
n = 6:  m = 1
n = 7:  m = 1
n = 8:  m = 2
n = 9:  m = 2
n = 10:  m = 3
n = 11:  m = 3
n = 12:  m = 4
n = 13:  m = 4



We can see that the formula for m is m =  n�4 / 2 when n � 4.  For the moment we do not need to 
worry that this does not hold when n is 2 or 3.  Plugging this value of m into the triangular number 
formula, we obtain the number of families of (2D) wings to be  n�4 / 2 n�4 / 2 �1 / 2, which 
equals  n�4 / 2 n�2 /2 /2.  Note that this formula is correct for n equal to 2 or 3.  Therefore, the 
number of configurations of the (2D) wings is:

192!

2448

n�4
2

 
n�2

2
2

Step 5: The (3D)(0D) pieces

To begin with the (3D)(0D) pieces, we remember that the number of permutations of a family is
64!/((8!)8).  They lie within an (n - 2)×(n - 2)×(n - 2) (3D) region, and we see that there is one family for 
each layer in the region above the center.  This makes the number of families (n - 2)/2 for even cubes 
and (n - 3)/2 for odd cubes, which we can write generally as  n�2 / 2 .  This results in

64!

8! 8

n�2
2

as the number of configurations of the (3D)(0D) pieces.

Step 6: The (3D)(1D) centers

The (3D)(1D) centers have 96!/((12!)8) permutations for each family.  They only exist on odd cubes, in 
an (n - 2)×(n - 2)×(n - 2) (3D) region.  As with the (3D)(0D) pieces, each layer above the center layer 
contains one family, making the number of families (n - 3)/2.  Applying the modulo operation, we find 
the number of configurations of the (3D)(1D) centers to be:

96!

12! 8

n mod 2
n�3

2

Step 7: The (3D)(2D) centers

The (3D)(2D) centers have 48!/((6!)8) permutations per family.  The number of families is identical to to 
the (3D)(1D) centers; they come on odd cubes with each layer of the (n - 2)×(n - 2)×(n - 2) region above 
the center layer having one family.  Therefore, the number of configurations of the (3D)(2D) centers is:

48!

6! 8

n mod 2
n�3

2



Step 8: The (3D)(1D) normals, (3D)(2D) normals, and (3D)(2D) wings

Each family of the (3D)(1D) normals, (3D)(2D) normals, and (3D)(2D) wings contains the same number
of permutations and orientations, namely 192!/((24!)8).  Therefore, we can count the number of families 
of each of them, and add these to obtain the total number of families.  Let us begin with the (3D)(1D) 
normals.

(3D)(1D) normals only exist on cubes where n � 6, and occur in a series of (3D)(1D) regions.  For n = 6,
we have a 4×4×4 (3D) region.  That region contains one 2×1 (3D)(1D) region, which contains one 
family of (3D)(1D) normals.  When n = 7, we have a 3×1 (3D)(1D) region with one family of (3D)(1D) 
normals, remembering not to count the center piece.  When n = 8, we have a 4×1 (3D)(1D) region with 
two families, but also a 2×1 (3D)(1D) region within the (3D) region that contains one family: 1 + 2 = 3.  
When n = 9, we have a 5×1 (3D)(1D) region that contains two families, and a 3×1 (3D)(1D) region 
beneath it that contains one family: 1 + 2 = 3.  When n = 10, we have a 6×1 region with three families, a 
4×1 region with two families, and a 2×1 region with one family, 1 + 2 + 3 = 6.  We are clearly dealing 
with the triangular numbers again, and in fact with the same counts as the (2D) wings, as can be seen by 
comparing these numbers with the table listed above for those pieces.  Therefore, by the same reasoning 
the count for the number of families is  n�4 / 2 n�2 / 2 / 2, making the number of configurations
of the (3D)(1D) normals:

192!

24! 8

n�4
2

 
n�2

2
2

Now we will consider the (3D)(2D) normals and (3D)(2D) wings.  Observe that we can simplify things 
by counting both at once, since they each have the same permutation and orientation counts, and occur 
on the same set of (3D)(2D) regions.

Similarly to the (3D)(1D) normals and their associated regions, we must consider nested series of
(3D)(2D) regions.  Here we will display a series of diagrams of these regions, starting with n = 6.  The 
regions will be shown in full, as a series: First, the outermost (n - 4)×(n - 4) (3D)(2D) region, followed 
by the (n - 6)×(n - 6) region beneath it, and continuing until we end with a 2×2 or 3×3 region.  Here are 
the diagrams, with the (3D)(2D) normals and wings representing their family being marked with an x:

n = 6:

n = 7:



n = 8:

          

n = 9:

          

n = 10:

                    

n = 11:

                    



We will have to consider the cases of odd and even cubes separately.  First, odd cubes.

We can identify a pattern; it is a sum of sums of consecutive even numbers.  Here we list the pattern for 
7 � n � 15:

n = 7:  2
n = 9:  2 + (2 + 4) = 8
n = 11:  2 + (2 + 4) + (2 + 4 + 6) = 20
n = 13:  2 + (2 + 4) + (2 + 4 + 6) + (2 + 4 + 6 + 8) = 40
n = 15:  2 + (2 + 4) + (2 + 4 + 6) + (2 + 4 + 6 + 8) + (2 + 4 + 6 + 8 + 10) = 70

The numbers continue: 112, 168, 240, ...

It would be difficult to derive a closed form for this sequence by hand.  Fortunately, there is a very 
useful website known as The On-Line Encyclopedia of Integer Sequences.6  Entering our sequence into 
the website we obtain one result, a sequence with the following formula:

2
m
3

where
m
3

 is a binomial coefficient, equal to m(m - 1)(m - 2)/6.

This formula needs to be modified, as it produces the sequence 2, 8, 20, 40, 70, ... for m equal to
3, 4, 5, 6, 7, ... respectively.  Here is a table listing corresponding values of m and n for 7 � n � 15:

n = 7:  m = 3
n = 9:  m = 4
n = 11:  m = 5
n = 13:  m = 6
n = 15:  m = 7

We can see that m = (n - 1)/2, therefore our formula becomes

2

n�1
2
3

which is equivalent to 2((n - 1)/2)((n - 3)/2)((n - 5)/2)/6, which equals:

n�5 n�3 n�1
24

Although this formula appears correct as the only sequence listed in The Encyclopedia, to be complete 
we must prove it is correct.  To do this we will use a slightly modified proof by induction.  We will first 
prove it correct for n = 7, then show that correctness for n = k implies correctness for n = k + 2.

The formula is correct for n = 7; (7 - 5)(7 - 3)(7 - 1)/24 = 2, which is the first term in our sequence 
above.

Now we assume that it holds for n = k, that is,



k�5 k� 3 k�1
24

= 2� 2�4 � 2�4�6 � ... � 2�4� ... � k�5

Assuming this, we write an expression for n = k + 2:

2� 2�4 � 2�4�6 � ... � 2�4� ... � k�3

We must show that this is equal to

k�2 �5 k�2 �3 k�2 �1
24

=
k�3 k�1 k�1

24

Using our equation above, we rewrite our expression for n = k + 2 as:

k�5 k�3 k�1
24

� 2�4� ... � k�3

The latter term is equal to 2(1 + 2 + ... + (k - 3)/2), which equals 2((k - 3)/2)((k - 3)/2 + 1)/2, by the 
triangular numbers formula, which in turn simplifies to (k - 3)(k - 1)/4.  Substituting this into our 
expression gives:

k�5 k�3 k�1
24

�
k�3 k�1

4

which equals

k�5 k�3 k�1 �6 k�3 k�1
24

This simplifies to

k�3 k�1 k�5�6
24

=
k�3 k�1 k�1

24

and thus we have proven our formula correct.

Therefore, we have shown that for odd n, the number of configurations of the (3D)(2D) normals and 
wings is

192!

24! 8

n�5 n�3 n�1
24

which can be written for all n as:

192!

24! 8

n mod 2 n�5 n�3 n�1
24

This expression is correct for n < 7, so it does not need to be modified.



Now we will examine the (3D)(2D) normals and wings for even n.

We have a similar pattern, a sum of sums of consecutive odd numbers.  Here is the pattern for
6 � n � 14:

n = 6:  1
n = 8:  1 + (1 + 3) = 5
n = 10:  1 + (1 + 3) + (1 + 3 + 5) = 14
n = 12:  1 + (1 + 3) + (1 + 3 + 5) + (1 + 3 + 5 + 7) = 30
n = 14:  1 + (1 + 3) + (1 + 3 + 5) + (1 + 3 + 5 + 7) + (1 + 3 + 5 + 7 + 9) = 55

which continues 91, 140, 204, ...

The formula for this sequence according to The Encyclopedia is:

m(m + 1)(2m + 1)/6

which produces the values above for m equal to 1, 2, 3, 4, 5, etc.  Here we have a table for corresponding
values of m and n, 6 � n � 14:

n = 6:  m = 1
n = 8:  m = 2
n = 10:  m = 3
n = 12:  m = 4
n = 14:  m = 5

We observe that m = (n - 4)/2, this makes our formula ((n - 4)/2)((n - 4)/2 + 1)(n - 4 + 1)/6, which 
equals:

n�4 n�3 n�2
24

Now we must prove that this formula is correct, using the same method of proof by induction as before.  
We first show it is correct for n = 6, then prove that correctness for n = k implies correctness for
n = k + 2.

The formula is correct for n = 6, as (6 - 4)(6 - 3)(6 - 2)/24 = 1.  We now assume that our formula holds 
for n = k:

k�4 k�3 k�2
24

= 1� 1�3 � 1�3�5 � ... � 1�3� ... � k�5

Here we have an expression for n = k + 2:

1� 1�3 � 1�3�5 � ... � 1�3� ... � k�3

We must prove that this is equivalent to

k�2 �4 k�2 �3 k�2 �2
24

=
k�2 k�1 k

24

Using our assumption, we can rewrite the expression for n = k + 2 as:



k�4 k�3 k�2
24

� 1�3� ... � k�3

It is known that that sum of the first p odd natural numbers is equal to p2.  Since there are
((k - 3) + 1)/2 = (k - 2)/2 odd numbers less than or equal to k - 3, we can simplify our expression to:

k�4 k�3 k�2
24

�
k�2 2

4

This equals

k�4 k�3 k�2 �6 k�2 2

24
=

k�2 k�4 k�3 �6 k�2
24

=

k�2 k2
�7 k�12�6 k�12

24

which simplifies to

k�2 k2
�k

24
=

k�2 k�1 k
24

as desired.

We have therefore shown that for even n, the number of configurations of the (3D)(2D) normals and 
wings is

192!

24! 8

n�4 n�3 n�2
24

This can be written for all n using a combination of the modulo operation and the absolute value 
function: n mod 2 �1  equals 1 when n is even, and 0 when n is odd.  Therefore, our calculation 
can be written as

192!

24! 8

n mod 2 �1 n�4 n�3 n�2
24

which is correct for n < 6.

We can now combine our three results for the number of families of the (3D)(1D) normals, (3D)(2D) 
normals, and (3D)(2D) wings.  We multiply them together to obtain:

192!

24! 8

n�4
2

 
n�2

2
2

�
n mod 2 n�5 n�3 n�1 � n mod 2 �1 n�4 n�3 n�2

24



as our count of the number of configurations of the (3D)(1D) normals, (3D)(2D) normals, and (3D)(2D) 
wings.

Step 9: The Formula

Having found the number of configurations of each type of piece, our last step is to multiply all of them 
together, obtaining C4(n), the number of configurations of an n×n×n×n Rubik's Cube:

C4 n =
15!�1215

6
24!�32!�226

�633 n mod 2 64!
2

�363

n�2
2 96!

2424 �2
95

n�2
2

� n mod 2
n�3

2

�

192!

2448

n�4
2

 
n�2

2
2 64!

8! 8

n�2
2 96!

12! 8

n mod 2
n�3

2 48!

6! 8

n mod 2
n�3

2

�

192!

24! 8

n�4
2

 
n�2

2
2

�
n mod 2 n�5 n�3 n�1 � n mod 2 �1 n�4 n�3 n�2

24

12. Conclusion

It is hoped that the reader has enjoyed this journey, and that they have gained a deeper understanding of 
higher-dimensional Rubik's Cubes.  Feel free to send comments, questions, suggestions, and corrections 
to this email address:

djs314djs314@yahoo.com

There will be sequels to this paper, the first of which will derive C5(n), the number of configurations of 

an n5 Rubik's Cube.  I would like to once again thank Melinda Green, Don Hatch, and Jay Berkenbilt for 
creating Magic Cube 4D, H. J. Kamack, T. R. Keane, and Eric Balandraud for their previous work, and 
especially Roice Nelson for his support, assistance, and inspiration.
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